Signal significance

- $H \rightarrow \gamma \gamma + WH, t\bar{t}H (H \rightarrow \gamma \gamma)$
- $WH, t\bar{t}H (H \rightarrow bb)$
- $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$
- $H \rightarrow WW^{(*)} \rightarrow ll\nu\nu$
- $H \rightarrow WW \rightarrow l\nu l\nu$

Total significance

100 fb^{-1} (no K-factors)
For this edition typing and typographical errors have been corrected. Layout and pagination may therefore differ slightly with respect to the first, limited edition.

All trademarks, copyright names and products referred to in this document are acknowledged as such.
ATLAS Collaboration

Armenia
Yerevan Physics Institute, Yerevan

Australia
Research Centre for High Energy Physics, Melbourne University, Melbourne
University of Sydney, Sydney

Austria
Institut für Experimentalphysik der Leopold-Franzens-Universität Innsbruck, Innsbruck

Azerbaijan Republic
Institute of Physics, Azerbaijan Academy of Science, Baku

Belarus
Institute of Physics of the Academy of Science of Belarus, Minsk
National Centre of Particle and High Energy Physics, Minsk

Brazil
Universidade Federal do Rio de Janeiro, COPPE/EE/IF, Rio de Janeiro

Canada
University of Alberta, Edmonton
Department of Physics, University of British Columbia, Vancouver
University of Carleton/C.R.P.P., Carleton
Group of Particle Physics, University of Montreal, Montreal
Department of Physics, University of Toronto, Toronto
TRIUMF, Vancouver
University of Victoria, Victoria

CERN
European Laboratory for Particle Physics (CERN), Geneva

China
Institute of High Energy Physics, Academia Sinica, Beijing, University of Science and Technology of China, Hefei, University of Nanjing and University of Shandong

Czech Republic
Academy of Sciences of the Czech Republic, Institute of Physics and Institute of Computer Science, Prague
Charles University, Faculty of Mathematics and Physics, Prague
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Faculty of Mechanical Engineering, Prague

Denmark
Niels Bohr Institute, University of Copenhagen, Copenhagen

Finland
Helsinki Institute of Physics, Helsinki

France
Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), IN2P3-CNRS, Annecy-le-Vieux
Université Blaise Pascal, IN2P3-CNRS, Clermont-Ferrand
Institut des Sciences Nucléaires de Grenoble, IN2P3-CNRS-Epitére Joseph Fourrier, Grenoble
Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille
Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS, Orsay
LPNHE, Universités de Paris VI et VII, IN2P3-CNRS, Paris
Republic of Georgia
Institute of Physics of the Georgian Academy of Sciences and Tbilisi State University, Tbilisi

Germany
Physikalisches Institut, Universität Bonn, Bonn
Institut für Physik, Universität Dortmund, Dortmund
Fakultät für Physik, Albert-Ludwigs-Universität, Freiburg
Institut für Hochenergiephysik der Universität Heidelberg, Heidelberg
Institut für Physik, Johannes-Gutenberg Universität Mainz, Mainz
Lehrstuhl für Informatik V, Universität Mannheim, Mannheim
Sektion Physik, Ludwig-Maximilian-Universität München, München
Max-Planck-Institut für Physik, München
Fachbereich Physik, Universität Siegen, Siegen
Fachbereich Physik, Bergische Universität, Wuppertal

Greece
Athens National Technical University, Athens
Athens University, Athens
High Energy Physics Department and Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki

Israel
Department of Physics, Technion, Haifa
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv
Department of Particle Physics, The Weizmann Institute of Science, Rehovot

Italy
Dipartimento di Fisica dell’ Università della Calabria e I.N.F.N., Cosenza
Laboratori Nazionali di Frascati dell’ I.N.F.N., Frascati
Dipartimento di Fisica dell’ Università di Genova e I.N.F.N., Genova
Dipartimento di Fisica dell’ Università di Lecce e I.N.F.N., Lecce
Dipartimento di Fisica dell’ Università di Milano e I.N.F.N., Milano
Dipartimento di Scienze Fisiche, Università di Napoli ‘Federico II’ e I.N.F.N., Napoli
Dipartimento di Fisica Nucleare e Teorica dell’ Università di Pavia e I.N.F.N., Pavia
Dipartimento di Fisica dell’ Università di Pisa e I.N.F.N., Pisa
Dipartimento di Fisica dell’ Università di Roma ‘La Sapienza’ e I.N.F.N., Roma
Dipartimento di Fisica dell’ Università di Roma ‘Tor Vergata’ e I.N.F.N., Roma
Dipartimento di Fisica dell’ Università di Roma ‘Roma Tre’ e I.N.F.N., Roma
Dipartimento di Fisica dell’ Università di Udine, Gruppo collegato di Udine I.N.F.N. Trieste, Udine

Japan
Department of Information Science, Fukui University, Fukui
Hiroshima Institute of Technology, Hiroshima
Department of Physics, Hiroshima University, Higashi-Hiroshima
KEK, High Energy Accelerator Research Organisation, Tsukuba
Department of Physics, Faculty of Science, Kobe University, Kobe
Department of Physics, Kyoto University, Kyoto
Kyoto University of Education, Kyoto-shi
Department of Electrical Engineering, Nagasaki Institute of Applied Science, Nagasaki
Naruto University of Education, Naruto-shi
Department of Physics, Faculty of Science, Shinshu University, Matsumoto
International Center for Elementary Particle Physics, University of Tokyo, Tokyo
Physics Department, Tokyo Metropolitan University, Tokyo
Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo
Morocco
Faculté des Sciences Ain Chock, Université Hassan II, Casablanca, and Université Mohamed V, Rabat

Netherlands
FOM - Institute SAF NIKHEF and University of Amsterdam/NIKHEF, Amsterdam
University of Nijmegen/NIKHEF, Nijmegen

Norway
University of Bergen, Bergen
University of Oslo, Oslo

Poland
Henryk Niewodniczanski Institute of Nuclear Physics, Cracow
Faculty of Physics and Nuclear Techniques of the University of Mining and Metallurgy, Cracow

Portugal
Laboratorio de Instrumentação e Física Experimental de Partículas (University of Lisboa, University of Coimbra, University Católica-Figueira da Foz and University Nova de Lisboa), Lisbon

Romania
Institute of Atomic Physics, National Institute of Physics and Nuclear Engineering, Bucharest

Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow
P.N. Lebedev Institute of Physics, Moscow
Moscow Engineering and Physics Institute (MEPhI), Moscow
Moscow State University, Institute of Nuclear Physics, Moscow
Budker Institute of Nuclear Physics (BINP), Novosibirsk
Institute for High Energy Physics (IHEP), Protvino
Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg

JINR
Joint Institute for Nuclear Research, Dubna

Slovak Republic
Bratislava University, Bratislava, and Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice

Slovenia
Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana

Spain
Institut de Física d’Altes Energies (IFAE), Universidad Autónoma de Barcelona, Bellaterra, Barcelona
Physics Department, Universidad Autónoma de Madrid, Madrid
Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia

Sweden
Fysiska institutionen, Lunds universitet, Lund
Royal Institute of Technology (KTH), Stockholm
University of Stockholm, Stockholm
Upplands University, Department of Radiation Sciences, Uppsala

Switzerland
Laboratory for High Energy Physics, University of Bern, Bern
Section de Physique, Université de Genève, Geneva

Turkey
Department of Physics, Ankara University, Ankara
Department of Physics, Bogazici University, Istanbul
United Kingdom
School of Physics and Astronomy, The University of Birmingham, Birmingham
Cavendish Laboratory, Cambridge University, Cambridge
Department of Physics and Astronomy, University of Edinburgh, Edinburgh
Department of Physics and Astronomy, University of Glasgow, Glasgow
Department of Physics, Lancaster University, Lancaster
Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool
Department of Physics, Queen Mary and Westfield College, University of London, London
Department of Physics, Royal Holloway and Bedford New College, University of London, Egham
Department of Physics and Astronomy, University College London, London
Department of Physics and Astronomy, University of Manchester, Manchester
Department of Physics, Oxford University, Oxford
Rutherford Appleton Laboratory, Chilton, Didcot
Department of Physics, University of Sheffield, Sheffield

United States of America
State University of New York at Albany, New York
Argonne National Laboratory, Argonne, Illinois
University of Arizona, Tucson, Arizona
Department of Physics, The University of Texas at Arlington, Arlington, Texas
Lawrence Berkeley Laboratory and University of California, Berkeley, California
Department of Physics, Boston University, Boston, Massachusetts
Brandeis University, Department of Physics, Waltham, Massachusetts
Brookhaven National Laboratory (BNL), Upton, New York
University of Chicago, Enrico Fermi Institute, Chicago, Illinois
Nevis Laboratory, Columbia University, Irvington, New York
Department of Physics, Duke University, Durham, North Carolina
Department of Physics, Hampton University, Virginia
Department of Physics, Harvard University, Cambridge, Massachusetts
Indiana University, Bloomington, Indiana
University of California, Irvine, California
Massachusetts Institute of Technology, Department of Physics, Cambridge, Massachusetts
University of Michigan, Department of Physics, Ann Arbor, Michigan
Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan
University of New Mexico, New Mexico Center for Particle Physics, Albuquerque
Physics Department, Northern Illinois University, DeKalb, Illinois
Ohio State University, Columbus, Ohio
Department of Physics and Astronomy, University of Oklahoma
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania
University of Pittsburgh, Pittsburgh, Pennsylvania
Department of Physics and Astronomy, University of Rochester, Rochester, New York
Institute for Particle Physics, University of California, Santa Cruz, California
Department of Physics, Southern Methodist University, Dallas, Texas
State University of New York at Stony Brook, Stony Brook, New York
Tufts University, Medford, Massachusetts
High Energy Physics, University of Illinois, Urbana, Illinois
Department of Physics, Department of Mechanical Engineering, University of Washington, Seattle, Washington
Department of Physics, University of Wisconsin, Madison, Wisconsin
Acknowledgements

The Editors would like to thank Mario Ruggier for his continuous help and competent advice on all FrameMaker issues. The Editors also warmly thank Michèle Jouhet and Isabelle Canon for the processing of the colour figures and the cover pages. Finally they would like to express their gratitude to all the Print-shop staff for their expertise in printing this document.
Acknowledgements
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Physics overview</td>
<td>ix</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>459</td>
</tr>
<tr>
<td>14.2</td>
<td>Theoretical picture</td>
<td>460</td>
</tr>
<tr>
<td>14.3</td>
<td>Challenges of new physics</td>
<td>462</td>
</tr>
<tr>
<td>14.4</td>
<td>Simulation of physics signals and backgrounds.</td>
<td>463</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Event generators.</td>
<td>464</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Signal observability.</td>
<td>466</td>
</tr>
<tr>
<td>14.5</td>
<td>Outline</td>
<td>468</td>
</tr>
<tr>
<td>14.6</td>
<td>References</td>
<td>468</td>
</tr>
<tr>
<td>15</td>
<td>QCD processes at the LHC.</td>
<td>471</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>471</td>
</tr>
<tr>
<td>15.2</td>
<td>Knowledge of the proton structure</td>
<td>472</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Global parton analyses and parton kinematics at the LHC</td>
<td>472</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Properties and uncertainties of parton distribution functions</td>
<td>473</td>
</tr>
<tr>
<td>15.2.3</td>
<td>Expected improvements before the LHC start-up</td>
<td>477</td>
</tr>
<tr>
<td>15.2.4</td>
<td>The role of data from ATLAS</td>
<td>477</td>
</tr>
<tr>
<td>15.3</td>
<td>Properties of minimum–bias events.</td>
<td>478</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Importance of minimum–bias studies</td>
<td>478</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Selection of minimum–bias events</td>
<td>478</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Modelling of minimum-bias events</td>
<td>478</td>
</tr>
<tr>
<td>15.3.4</td>
<td>Measurements</td>
<td>479</td>
</tr>
<tr>
<td>15.4</td>
<td>Measurements of hard diffractive scattering</td>
<td>482</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Overview</td>
<td>482</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Existing studies of hard diffraction</td>
<td>484</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Models for hard diffractive scattering</td>
<td>485</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Trigger and event selection</td>
<td>486</td>
</tr>
<tr>
<td>15.4.5</td>
<td>Single hard diffractive dissociation</td>
<td>488</td>
</tr>
<tr>
<td>15.4.6</td>
<td>Double Pomeron exchange</td>
<td>491</td>
</tr>
<tr>
<td>15.4.7</td>
<td>Colour-singlet exchange</td>
<td>493</td>
</tr>
<tr>
<td>15.4.8</td>
<td>Diffractive W and Z production</td>
<td>494</td>
</tr>
<tr>
<td>15.4.9</td>
<td>Diffractive heavy flavour production</td>
<td>494</td>
</tr>
<tr>
<td>15.4.10</td>
<td>Summary on hard diffractive scattering</td>
<td>495</td>
</tr>
<tr>
<td>15.5</td>
<td>Jet physics</td>
<td>496</td>
</tr>
<tr>
<td>15.5.1</td>
<td>Overview</td>
<td>496</td>
</tr>
<tr>
<td>15.5.2</td>
<td>Inclusive jet cross-section.</td>
<td>496</td>
</tr>
<tr>
<td>15.5.3</td>
<td>Jet shape and fragmentation.</td>
<td>501</td>
</tr>
<tr>
<td>15.5.4</td>
<td>Di-jet production</td>
<td>502</td>
</tr>
<tr>
<td>15.5.5</td>
<td>Multi-jet production</td>
<td>506</td>
</tr>
<tr>
<td>15.5.6</td>
<td>Double parton scattering</td>
<td>507</td>
</tr>
<tr>
<td>15.6</td>
<td>Photon physics</td>
<td>508</td>
</tr>
<tr>
<td>15.6.1</td>
<td>Overview</td>
<td>508</td>
</tr>
<tr>
<td>15.6.2</td>
<td>Inclusive photon production</td>
<td>508</td>
</tr>
<tr>
<td>15.6.3</td>
<td>Photon pair production</td>
<td>510</td>
</tr>
</tbody>
</table>
15.6.4 Photon + jet production ... 513
15.6.5 Photon + charm and photon + beauty production 514
15.7 Drell-Yan physics and gauge-boson production 515
 15.7.1 Overview .. 515
 15.7.2 Drell-Yan production .. 515
 15.7.3 W production ... 517
 15.7.4 Z production ... 521
 15.7.5 Gauge boson pair production 523
15.8 Heavy flavour physics .. 527
 15.8.1 Overview .. 527
 15.8.2 Charm production .. 528
 15.8.3 Bottom production ... 530
 15.8.4 Top production ... 534
15.9 Conclusion .. 536
15.10 References .. 537

16 Physics of electroweak gauge bosons 545
 16.1 Measurement of the W mass .. 545
 16.1.1 The method .. 546
 16.1.2 W production and selection 547
 16.1.3 Expected uncertainties ... 547
 16.1.4 Results ... 551
 16.2 Gauge-boson pair production .. 553
 16.2.1 Wγ production ... 554
 16.2.2 WZ Production .. 555
 16.2.3 Determination of Triple Gauge Couplings 555
 16.2.4 Systematic uncertainties 557
 16.2.5 Results ... 558
 16.3 Conclusions .. 559
 16.4 References .. 559

17 B-physics ... 561
 17.1 Introduction .. 561
 17.1.1 General features of beauty production in ATLAS 562
 17.1.2 Model used for simulation studies 562
 17.1.3 Trigger ... 563
 17.2 CP-violation studies .. 564
 17.2.1 Overview ... 564
 17.2.2 Measurement of asymmetry in $B^0_s \rightarrow J/\psi K^0_s$ 565
 17.2.3 Measurement of asymmetry in $B^0 \rightarrow \pi^+\pi^-$ 577
 17.2.4 Analysis of the decay $B^0_s \rightarrow J/\psi \phi$ 582
 17.2.5 Analysis of the decay $B^0 \rightarrow D^{0}K^{*0}$ 590
 17.2.6 Conclusions on CP violation 591
 17.3 Measurements of B^0_s oscillations 592
 17.3.1 Introduction ... 592
 17.3.2 Event reconstruction ... 593
17.3.3 Background analysis .. 597
17.3.4 Evaluation of signal and background statistics 597
17.3.5 Determination of the proper-time resolution 600
17.3.6 Extraction of reach .. 601
17.3.7 Dependence of reach on experimental quantities 603
17.3.8 Conclusions .. 604

17.4 Rare decays \(B \to \mu \mu(X) \) .. 604
17.4.1 Introduction .. 604
17.4.2 Theoretical approach 605
17.4.3 Simulation of rare \(B \)-decay events 606
17.4.4 The measurement of the forward–backward asymmetry 610
17.4.5 Conclusions .. 612

17.5 Precision measurements of \(B \) hadrons 612
17.5.1 Measurements with the \(B_c \) meson 612
17.5.2 \(\Lambda_b \) polarisation measurement 613
17.6 Conclusions on the \(B \)-physics potential 615
17.7 References ... 616

18 Heavy quarks and leptons .. 619
18.1 Top quark physics .. 619
18.1.1 Introduction .. 619
18.1.2 \(t\bar{t} \) selection and event yields 620
18.1.3 Measurement of the top quark mass 622
18.1.4 Top quark pair production 639
18.1.5 Top quark decays and couplings 643
18.1.6 Electroweak single top quark production 652
18.1.7 Conclusions of top quark physics studies 662
18.2 Fourth generation quarks 663
18.2.1 Fourth family up quarks 664
18.2.2 Fourth family down quarks 666
18.2.3 Bound states of fourth family quarks 667
18.3 Heavy leptons .. 668
18.4 Conclusions ... 669
18.5 References ... 669

19 Higgs Bosons .. 673
19.1 Introduction ... 673
19.2 Standard Model Higgs boson 674
19.2.1 Introduction .. 674
19.2.2 \(H \to \gamma\gamma \) ... 675
19.2.3 \(H \to Z\gamma \) ... 684
19.2.4 \(H \to b\bar{b} \) .. 685
19.2.5 \(H \to ZZ^* \to 4l \) .. 693
19.2.6 \(H \to WW^{(*)} \to 4l\nu \) 704
19.2.7 \(WH \) with \(H \to WW^{*} \to 4l\nu \) and \(W \to l\nu \) 709
19.2.8 Sensitivity to the SM Higgs boson in the intermediate mass range 712
19.2.9 $H \rightarrow ZZ \rightarrow 4l$... 714
19.2.10 Heavy Higgs boson ... 716
19.2.11 Overall sensitivity to the SM Higgs searches 729
19.2.12 Determination of the SM Higgs-boson parameters 730
19.3 Minimal Supersymmetric Standard Model Higgs boson .. 736
19.3.1 Introduction .. 736
19.3.2 Scenarios with heavy SUSY particles. 737
19.3.3 Overall sensitivity ... 773
19.3.4 Determination of the MSSM Higgs parameters 777
19.3.5 SUGRA scenarios ... 781
19.4 Strongly interacting Higgs sector 795
19.4.1 Detector performance issues 795
19.4.2 Vector boson scattering in the Chiral Lagrangian model . 796
19.5 Conclusions on the Higgs sector 801
19.6 References ... 803

20 Supersymmetry ... 811
20.1 Introduction ... 811
20.2 Supergravity models ... 816
20.2.1 Inclusive SUGRA measurements 818
20.2.2 Exclusive SUGRA measurements for moderate $\tan \beta$ 822
20.2.3 $t\bar{t}$ SUGRA signatures 825
20.2.4 More complex leptonic SUGRA signatures 829
20.2.5 $h \rightarrow b\bar{b}$ SUGRA signatures 835
20.2.6 Thresholds and model-independent SUGRA masses 839
20.2.7 Other signatures for SUGRA Points 1 – 5 842
20.2.8 Exclusive SUGRA measurements for large $\tan \beta$ 847
20.2.9 Fitting minimal SUGRA parameters 853
20.2.10 Non-universal SUGRA models 860
20.3 Gauge mediated SUSY breaking models 863
20.3.1 GMSB Point G1a ... 865
20.3.2 GMSB Point G1b ... 870
20.3.3 GMSB Point G2a ... 873
20.3.4 GMSB Point G2b ... 877
20.3.5 Fitting GMSB parameters 883
20.4 R-Parity breaking models 887
20.4.1 Baryon number violation: $\chi^0_1 \rightarrow qqq$ 888
20.4.2 Lepton number violation: $\chi^0_1 \rightarrow t\bar{t} \nu$ 895
20.4.3 Lepton number violation: $\chi^0_1 \rightarrow q\bar{q} l, q\bar{q} \nu$ 906
20.5 Conclusion ... 910
20.6 References ... 911

21 Other physics beyond the Standard Model 915
21.1 Introduction ... 915
21.2 Search for technicolor signals 915
21.2.1 Technicolor signals from $q\bar{q}$ fusion 916
21.2.2 Signals from vector boson fusion .. 924
21.2.3 Conclusion. .. 925
21.3 Search for excited quarks .. 925
 21.3.1 The widths of excited quarks ... 926
 21.3.2 Simulation of the signal and backgrounds 927
 21.3.3 Conclusion. .. 930
21.4 Leptoquarks .. 931
21.5 Compositeness ... 932
 21.5.1 High-\(p_T\) jets ... 932
 21.5.2 Transverse energy distributions of jets. 933
 21.5.3 Jet angular distributions. .. 935
 21.5.4 Dilepton production ... 939
21.6 Search for new gauge bosons and Majorana neutrinos 939
 21.6.1 Search for new vector bosons 940
 21.6.2 Search for right-handed Majorana neutrinos 944
21.7 Monopoles .. 949
21.8 References ... 952

A Members of the ATLAS Collaboration 955