LHC-ATLAS実験における*lvqq*終状 態を用いた高質量W'共鳴状態の 探索

東大理,東大素セ^A 西澤佑一,寺師弘二^A 森永真央,浅井祥仁 日本物理学会 秋季大会 2014/9/19 佐賀大学

- 物理的背景
- Jetのアルゴリズムについて
- ・ MCサンプル
- 解析
- 結果

物理的背景

W'の崩壊

 $W' \rightarrow W + Z \rightarrow l \nu q q$

において、W'共鳴の質量が大きいとき、崩壊 生成物のW/Zはブーストされている。

Zがhadronic崩壊して出たクオークは,Zの静 止系では二本のジェットを作る。 しかし、Zがブーストされていると2本の距離が 近くなり、1本のジェットとして観測される。 -(右図)

 このような場合に、大きな半径のジェット (Fat jet)を使って、その内部構造を見る ことは、hadronic崩壊したZの判別に有 効である。

JETのアルゴリズムについて

現在標準的に使われているAnti-Ktアルゴリズムと、 大きな半径のジェット(Fat jet)を使ったC/A+BDRS-Aアルゴリ ズムを用いた場合の、シグナルの発見感度の比較が主題 である。

よって、

- クラスタリング
 Anti-Kt やCambridge Aachen(C/A) といった、
 ジェットを構成するためのアルゴリズム
- BDRS-A

C/Aジェットに、ソフトな成分を取り除くグルーミングという処理を施すアルゴリズム

について説明する。

ジェットのクラスタリング

手順

BDRS-A

MCサンプルについて

MCサンプル

MCサンプル 14TeVのSignalとbackgroundを用意し、解析に用いた。

それぞれのサンプルのルミノシティを10fb⁻¹に統一して比較に用いた。

また、今回はMuon channelのみの解析を行った。

Signal sample

Drell Yan process

$$W' \rightarrow W + Z \rightarrow l \nu q q$$

<u>W'の質量が500GeV,1TeV,2TeVの三種類の</u> <u>サンプル</u>

Background sample

• W + jet (
$$W - > \mu v$$
)

• Z + jet (
$$Z - > \mu \mu$$
)

y ttbar

目的

バックグラウンドとシグナル両方のW'の質量分布 を作り、Anti-Kt R=0.4 および、C/A+BDRS-A R=1.2を 用いた場合のシグナルの発見感度について調べる。

W'質量分布構成方法

• W'の質量分布は終状態 *lvqq*の4元運動量から再構成する。

ただし、METについては横運動量の成分のみしかわからないので ー>wの質量を仮定してニュートリノのPz,Eをもとめた。

Event Selection

	Anti – Kt R=0.4	C/A R=1.2 BDRS-A
Number of lepton	Number of muon =	==1 (Pt>30GeV)
Jet Pt	 1.一本以上のジェットを持つ かつLeading jet に関し Pt>200GeV 上を満たさなければ 2.二本以上のジェットを持つ かつ Leading jet 二本に関し Pt>50GeV 	ー本以上のジェットを持つ かつ Leading jet が Pt>200GeV
Jet mass	ジェットの不変質量が700	GeV以上110GeV以内
Momentum balance	なし	Momentum balance >0.45

バックグラウンドにおけるJetの質量分布

ジェット質量のcut [70GeV< jet mass <110GeV] をかける前のJetの質量分布を示す。

$$\int L dt = 10 fb^{-1}$$
 緑: ttbar
 $\sqrt{s} = 14 TeV$ 赤: W+jet
青: Z+jet

 70GeV<jet mass<110GeV内のイベント数を みると、おおよそ同じ程度のバックグラウン ドが残ることがわかる。

W'	mass	(GeV)
----	------	-------

Fit 結果	Signal-500GeV-		Signal-1TeV-		Signal-2TeV-	
	mean	σ	mean	σ	mean	σ
AntiKt R=0.4	490	50	960	93	1990	110
C/A R=1.2 +BDRS-A	500	40	990	68	1950	110

アルゴリズムの評価方法

- 1. それぞれのsignalのpeak周り2σ(ガウシアン を仮定)の範囲を求める。
- その範囲に入っているSignal, Backgroundの Event数をそれぞれ求めて、significanceを求 める。

(下)BackgroundのW'の質量分布

カットフロー

各カットをかけた後にどれくらいイベントが残る かをbackground 2TeVのsignalそれぞれについ て示した。

カット

• Jet mass cut

70GeV<jet mass <110GeV

• MB cut

momentum balance >0.45

*全質量領域のイベント数

	Anti-k	(t R=0.4	C/A R=1.2+BDRS-A		
	Background	2TeV-signal	Background	2TeV-signal	
Jet Pt	240000	7.7	81000	7.5	
Jet mass cut	37000	4.6	31000	4.8	
MB cut			10000	3.5	

期待されるsignificance

W'mass=2TeVのシグナルサンプル

「ナル発見感度よい。

	Signal-2TeV-	Event in 2σ		S/√B				
		BG	signal					
	AntiKt R=0.4	63	3.3	0.41				
	C/A R=1.2 BDRS-A	10	2.7	0.85				
W'mass=2TeVのシグナルサンプルについて、significanceがC/A+BDRS- Aの方が大きくなっている。 W'mass=2TeVの高質量W'に関して、C/A+BDRS-Aの方が、Anti-Ktよりも								

まとめ

高質量W'の探索において、C/A+BDRS-Aを用いることで、シグナルの発見感度を改善することが出来る。

今後の研究

- Run2 において14 TeVでのC/A+BDRS-Aを使った場 合のW' ->WZ->*lvqq*の発見感度の研究
- ベクターボソン散乱過程測定への応用

BACKUP

カットフロー

各カットをかけた後にどれくらいイベントが残る かをbackground signalそれぞれについて示した。 Jet mass cut
70GeV<jet mass <110GeV

• Yf cut

momentum balance >0.45

Background	Anti-Kt	BDRS-A	
Jet Pt	2.4e+05	8.1e+04	$\sqrt{S} = 14IeV$ $\int L dt = 10 \ fb^{-1}$
Jet mass cut	3.7e+04	3.1e+04	$\int Lat = 10 Jb$
Yf cut		1.0e+04	

signal		Anti-Kt			BDRS-A	
W' mass	500GeV	1TeV	2TeV	500GeV	1TeV	2TeV
Jet Pt	1.8e+03	1.7e+02	7.7	1.2e+03	1.5e+02	7.5
Jet mass cut	1.2e+03	1.1e+02	4.6	7.5e+02	91	4.8
Yf cut				4.3e+02	55	3.5

期待されるsignificance

W' mass	500Gev		1Tev		2Tev	
	BG	signal	BG	signal	BG	signal
AntiKt R=0.4	1.5e+04	1.0e+03	1.7e+03	77	63	3.3
C/A R=1.2 +BDRS-A	4.5e+03	3.8e+02	3.4e+01	45	10	2.7

	significance = S/VB	
-		

significance	500Gev	1Tev	2Tev
AntiKt R=0.4	8.2	1.8	0.41
C/A R=1.2 +BDRS-A	5.6	2.4	0.85

低エネルギーではAnti-Ktの ほうが感度がいいことがわ かる。 しかし,W'の質量が大きくな るにつれ、BDRS-Aの感度の 方が良くなっていく。