LHC-ATLAS実験におけるH→ττ→hadronhadron崩壊チャンネルを用いたヒッグス粒子 の探索

津野総司 (KEK)

ところが実験が始まってみると。。。

2010年, 7TeV

First result of H->ττ->hh at LHC (2011) 3年前。。

7TeV解析, 2011

解析概要

事象選別: 基本選別

- 1. di-tau トリガー pT > 29, 20 GeV
- 2. τ pT > 35, 25GeV
- 3. no electron, muon in the event
- 4. $\Delta R(\tau, \tau) < 2.8$
- 5. MET > 20 GeV, min. $\Delta \phi$ (MET, τ) < $\pi/2$

VBF category:

- jet pT > 50, 30 GeV
- Δη(j,j) > 2.0, pT(H) >40 GeV

Boosted category:

- not.VBF selection
- pT(H) > 100 GeV

Control Region: (background estimation)

not.VBF && not.Boosted selection

Multi-variate analysis: BDT

VBF; 8-vatiables $m_{\tau\tau}$, $\Delta R(\tau, \tau)$, $\Delta \eta(j, j)$, mjj, $\eta 1 x \eta 2$, pT(tot), $\Delta \phi$ (MET, τ), $\Delta \eta(\tau, j)$

Boosted; 5-vatiables

m_{ττ}, pT(H), $\Delta \phi$ (MET,τ), x1, x2

- CRでの様々なkinematicsの検証、
- Signal Region(SR)でのmass window外のBDT/mass分布の検証、
- SRでのバックグラウンド優勢領域でのBDT/mass分布の検証。

上記検証をパスして初めて、Signal Regionのデータをopen。

(*) 正確には、Not-Opposite-Sign event。

 $\Delta\eta(\tau_{had},\tau_{had})$

バックグラウンドの検証(一例)

Control Regionでのkinematic分布 (一例)

系統誤差

VBF category

士 た玄綝詔羊・	v Di category					
	Source of uncertainty	VBF	ggF	$Z \rightarrow \tau^+ \tau^-$	Multijet	Others
トリガー ~15%	Luminosity	2.8%	2.8%			2.8%
Jet energy scale (MC) ~10%	Trigger	15.7%	13.8%	8.1%		11.0%
	Embedding procedure			6.0%		
Theory:QCD / UE ~30%	Multijet modeling				15.3%	
	Tau identification	8.8%	8.8%	<1%		6.2%
	Tau mis-identification	<1%	$<\!1\%$	<1%		6.4%
	Tau energy scale	1.0%	1.9%	3.4%		2.5%
	Jet energy scale	9.0%	13.6%			6.5%
	PDF	3.0%	8.0%	N		4.0%
	QCD scale	2.0%	31.0%	}		1.0%
	Underlying event	6.0%	30.0%			
=			7			
VBE catagonyでは、ggEのUEに対する						
VBI Category		b				
systematics	ま、計40%以上。					
(今後、CMSと	:のcoherentな扱いが	重要。)				

(*) Last bin entries

March.27.2014

JPS meeting

結果とまとめ

Backup

