LHC-ATLAS 実験における H->WW*->lvlv 崩壊チャンネルを用いたヒッグス粒子の 信号強度測定のための背景事象の研究

岸本巴、^A吉原圭亮、^B 增渕達也、藏重久弥、山崎祐司、Li Yuan

神戸大理、 А 東大理、 В 東大素セ

Mar 28 2014

日本物理学会 2014 春期大会

イントロダクション

- H->WW*->lvlvでは終状態に2つのニュートリノを伴うため、
 不変質量の完全な再構成が困難。
- 従って質量分解能が悪く背景事象 との区別が難しい。

→ 予想される背景事象を正確に見積もる事が重要

- Leptonの pT 閾値を下げることで、統計誤差の改善を試みている。
 - $p_T^{\text{lead}} > 25$, $p_T^{\text{sublead}} > 15$ GeV (Moriond 2013, ATLAS-CONF-2013-030) $\rightarrow p_T^{\text{lead}} > 22$, $p_T^{\text{sublead}} > 10$ GeV
 - •約10%の信号強度の測定精度の向上を予想。

信号領域における背景事象の割合

• High p_T : $p_T^{\text{sublead}} > 15 \text{ GeV}$, Low p_T : $p_T^{\text{sublead}} = 10\text{-}15 \text{ GeV}$

Di-bosons(wz/zz/w_γ(*)) と W+jets 背景事象の理解が重要。

Di-boson 背景事象

- "Di-boson"背景事象は W_{γ*}/WZ/W_γ/ZZ 事象からなる。
- MC シミュレーションをベースにした 見積もりを行う。
- Diboson 事象に対する理論的誤差:

0 jet 16% 4% 11% 4% 1 jet 29% 4% 53% 4%			${\sf W}\gamma^*$	WZ	${\sf W}\gamma$	ZZ	
1 jet 29% 4% 53% 4%	0	jet	16%	4%	11%	4%	
	1	jet	29%	4%	53%	4%	_

• 不定性の大きい $W_{\gamma*}/W_{\gamma}$ に関して、 $W_{\gamma*}/W_{\gamma}$ が支配的な確認領域 (Validation Region(V.R.))を選び出し MC の有効性を確認した。— update

$$W_{\gamma}/W_{\gamma*}$$
 コントロールサンプル

• γ (γ*)の external (internal) conversion の特性を利用する。

	${\sf W}\gamma$	${ m W}\gamma^*$
# of leptons	$1 \operatorname{electron}(*1) + 1 \operatorname{muon}$	1 electron + 2 muons
Lepton p_T	>22, 10 GeV	>22, 10, 3 GeV
Other	Same Sign	$M_{\mu\mu} < 7 \; GeV(*2)$

 W_γ: photon conversion 由来の electron を選ぶために、electronの識別基準の 一部 (内部飛跡検出器の最内層におけ る hit 等)の要求を反転させる (*1)。

• W
$$\gamma$$
*: γ * → $\mu\mu$ を選ぶために、
M $_{\mu\mu}$ <7 GeV を要求する (*2)。

データによる確認

• V.R. における横質量 $m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - |\vec{p}_{\rm T}^{\ell\ell} + \vec{p}_{\rm T}^{\rm miss}|^2}$ $W\gamma V.R.$ $W\gamma * V.R.$ 140r Events / 6.7 GeV Events / 6.7 GeV 25 + Data W (sys ⊕ sta + Data **ATLAS** work in progress $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 20.3 \text{ fb}^{-1}$ ATLAS work in progress ww. 🔲 wz ww. wz Ζγ 120 🔲 zz √s = 8 TeV, ∫ Ldt = 20.3 fb⁻¹ 🔲 ZZ 🔲 Ζγ wγ 🗖 Wy wγ WY $W\gamma \rightarrow \mu vee + 0 jets$ 20 ₩ү*→еνцц 100F 🔲 tī Single Top tī Single Top W+jet Z/y W+jet Z/y ggF [125 GeV] ggF [125 GeV] 80 15 60 10 40 20 5 250 50 100 150 200 50 150 250 200 m_T [GeV] m_T [GeV]

• 誤差の範囲で MC がデータを再現している。

- **→ →** •

W+jets 背景事象

- W+jets 背景事象の見積もり:
- Jet→lepton を正確にシミュレーション するのは難しい。
 Hadrons / Conversions / Heavy Flavour

- Fake factor method

- 1. Jet→lepton の fake factor(N_{id}/N_{anti-id})をデータから計算。
- 2. "id + anti-id"のコントロール領域をデータから構築。

Z+jets Fake Factor

• Z+jets 事象を用いて Fake Factor (F.F.) を計算。 ← update

- F.Fの計算には di-jets 事象を用いていた。MCを用いて di-jet と W+jets の F.F. の違いを系統誤差として課していた、約 40%.
- Z+jetsを用いることで、この系統誤差の削減を期待。

 Step1. Z→ee/µµ 事象を選別。 (76 < M_{ee,µµ} < 107 GeV)

- Step2. Di-bosons(ZZ,W+X) を veto。
- Step3. 対象のZ由来でない lepton に 対し、id/anti-id を判別。 FakeFactor = N_{id}/N_{anti-id} (1)

Fake Factor とその誤差

Electron Fake Factor

Muon Fake Factor

10-15	15-20	20-25	25-		10-15	15-20	20-25	25-
Z+jets F.F 0.0080	0.0065	0.0052	0.0070	Z+jets F.F (0.105	0.095	0.086	0.077
(stat⊕syst) (29%)		(61%)	(43%)	(stat⊕syst)	(23%)	(27%)	(36%)	(45%)
Di-jets F.F 0.0071	0.0085	0.0075	0.0048	Di-jets F.F (0.145	0.116	0.108	0.079
(stat⊕syst) (51%)	(51%)	(51%)	(50%)	(stat⊕syst)	(40%)	(40%)	(40%)	(41%)

• Di-jet を用いる場合に比べて、20-30%の系統誤差の改善。

Same sign イベントを用いた確認

- Same sign V.R.: 終状態のレプトンが同符号であることを要求。
 - WW,Top,Z+jets が抑制され、W+jets, dibosons(WZ/ZZ/Wγ(*)) が支配的な領域となる。
 - 信号領域と同じ選別を行うことで、W+jets, dibosons 背景事象の
 見積もりが信号領域においても有効かどうか評価することが可能。

W+jets + dibosons がデータと良い一致。
 →Fake Factor と diboson MC が信号領域において正しく動作。

T.Kishimoto (Kobe)

まとめ

- H->WW*->lvlvの0,1 jet channel では、low-p_T (p_T^{sublead}=10-15 GeV)で、W+jets, diboson(wz/zz/w_γ(*))背景事象の理解が重要。
- 理論的不定性の大きい W_γ/W_γ* 事象に関して、V.R. を定義した。
 - MC が誤差の範囲でデータを再現。
- Z+jets を用いる Fake Factor の見積もり方法を開発した。
 - •既存の方法に比べ、20-30%の系統誤差の改善を示した。
 - Same Sign イベントを用いて Fake Factor が誤差の範囲で 正しいことを確認。

• Same Sign イベントを同時 fit することで、系統誤差の削減を計画。

Backup

3

Image: A math and A

Object selection

id electron	anti-id electron
VTLH (10-20), Medium++ w/ Conv Bit and BLayer (25-)	! Medium++
z0sin w.r.t. PV) < 0.4 mm	0.4 mm
Impact parameter significance (d0sig) < 3	3
TopoEtcone30Corr/Et<0.20(10-15),	
<0.24(15-20),<0.28(20-)	${\sf TopoEtcone30Corr/Et}{<}0.30$
ptcone40/Et<0.06(10-15),<0.08(15-20),<0.10(20-)	ptcone40/Et<0.16

id muon	anti-id muon
Impact parameter significance (d0 sig) $<$ 3	no cut
Etcone30Corr/pt<0.06(10-15),	Etcone30Corr/pt<0.15(10-15),
<0.12(15-20),<0.18(20-25),<0.30(25-)	<0.25(15-20),<0.30(20-)
$ptcone40/pt{<}0.06(10{\text -}15),{<}0.08(15{\text -}20),{<}0.12(20{\text -})$	no cut

3

・ロト ・ 日 ト ・ ヨ ト ・

Backgrounds

- Irreducible backgrounds:
 - WW
 - 終状態が信号と同じ!

- Redusible backgrounds: W+jets, Z+jets, Top, Di-boson
 - オブジェクト (muon, electron, jet..)の miss-ID 等が原因。

日本物理学会 2014 春期大会

ISR,FSR

æ Mar 28 2014

3

Image: A mathematical states of the state

Fake Factor systematics

• Electron:

Z+jets F.F	Stat.	EW	SD	Di-jets F.F	Stat.	EW	SD
10-15	18%	11%	$\sim 20\%$	10-15	7%	3%	${\sim}50\%$
10-20	34%	19%	$\sim 20\%$	10-20	9%	5%	${\sim}50\%$
20-25	53%	25%	$\sim 20\%$	20-25	8%	5%	${\sim}50\%$
25-	30%	23%	$\sim 20\%$	25-	5%	3%	${\sim}50\%$

• Muon:

Z+jets F.F	Stat.	EW	SD	Di-jets F.F	Stat.	EW	SD
10-15	10%	27%	$\sim 20\%$	10-15	1%	0%	${\sim}40\%$
10-20	17%	5%	$\sim 20\%$	10-20	1%	1%	${\sim}40\%$
20-25	29%	9%	$\sim 20\%$	20-25	1%	2%	${\sim}40\%$
25-	34%	21%	$\sim 20\%$	25-	1%	9%	${\sim}40\%$

Same sign イベントを用いた確認 (low-p_T)

-