

LHC-ATLAS Run2実験に向けた て粒子トリガーの開発構築

早大理工、KEK^A <u>三谷貴志</u>、寄田浩平、津野総司^A、 2014年3月27日(木)日本物理学会第69回年次大会 @東海大学 湘南キャンパス

27pSD-12

LHC Upgrade 計画

2010 2011	Run 1		
2012	√s = 7-8 Te	eV L = ~0.8×10 ³⁴ cm ⁻² s ⁻¹	
2013 2014	Shutdown	"Phase-0" Upgrade	用左
2014 2015 2016 2017	Run 2 √s = 13(14	4)TeV L=~1.6×10³⁴cm^{−2}s^{−1}	▶ 5元1工
2018	Shutdown	"Phase-1" Upgrade	
2019 2020 2021	Run 3 √s=14TeV	L=~2.0×10 ³⁴ cm ⁻² s	-1
2022 2023	Shutdown	"Phase-2" Upgrade	
2024 :	Run 4以降 √s=14TeV	L=~5.0×10 ³⁴ cm ⁻	⁻² S ⁻¹
2035		ルミノシティは段階	皆的に上がっていく。
27/Ma	nr/2014	日本物理学会第 69 回年次大会	2/10

LHC Upgrade 計画

Motivation

Run1 Triggers for $H \rightarrow \tau \tau$ Analysis

Channel	Trigger	Trigger Threshold	Offline Thredhold
Lepton-Lepton	e-µ trigger	12(e)/8(μ) GeV	15(e)/10(μ)GeV
Lepton-Hadron	Single-lepton	24(e/µ)GeV	26(e/µ)/20GeV
Hadron-Hadron	di-tau	29/20GeV	35/25GeV

Run2以降、ての信号だけでなく、QCD di-jetsやpile-upも増加し、トリガーレートを圧迫。

- L1ではトポロジカルトリガー等の導入により、トリガーレートを充分落す。
- Run1で、独立に存在していたL2とEFというHLTの2つのステップを、1つのPCで行えるように統合し、プロセス時間に柔軟性を持たせる。
 - HLT初期段階でトリガーレートを大きく落すことで(70-80%)、オフライン同等な アルゴリズムを用いてt粒子識別を行う。

- L1ではトポロジカルトリガー等の導入により、トリガーレートを充分落す。
- Run1で、独立に存在していたL2とEFというHLTの2つのステップを、1つのPCで行えるように統合し、プロセス時間に柔軟性を持たせる。
 - HLT初期段階でトリガーレートを大きく落すことで(70-80%)、オフライン同等な アルゴリズムを用いてτ粒子識別を行う。

Calo. Pre-selection

 HLTのエネルギー情報から、ハドロン崩壊する⁴ τ粒子と、QCDジェットの形状の違いを用いて、
 トリガーレートを落す。

しかし。。。

エネルギー情報のみで、トリガーレートを 充分落す(~70~80%)には、p_T 閾値~30GeV 以上にしなければならない。

信号感度を悪化させる

さらに飛跡情報を用いることによって、より多く のジェットを除去して、低いp_T閾値を維持したい。 → FTKを用いたPre-selection

27/Mar/2014

5/10

Fast TracKer (FTK)

- ATLASトリガーの飛跡再構成
 L1トリガーを鳴らしたオブジェクト周りの領域にある飛跡のみを再構成する。
 - オブジェクトから遠い飛跡は再構成出来ない。
- FTK (高速飛跡トリガー)
 - Run2より新たに導入される(本年挿入開始!)
 - O(100)µs以内で全飛跡を再構成
 - 詳細は29日の講演を参照 (29pTH-1,2,3)

Run2で新たに出来る事

HLTの初期段階から、トリガーオブジェクト 周りの広い領域にある飛跡情報を用いて、 ジェットを効率良く除去出来る。広い領域で見ても、

オフラインとFTKの飛跡数が良く一致

L1トリガーを鳴らしたオブジェクト

6/10

日本物理学会第69回年次大会

FTKを用いたときのr粒子トリガーの流れ

• FTKをPre-selectionに用いた事による利点

① 飛跡情報でジェットを除去する事で、p_τ閾値を下げることが出来る。 ② HLTの初期段階で高速にPre-selectionをかけられるため、後段のプロセス時 間に余裕を与え、よりオフライン同等なτ粒子識別を行うことが出来る。

- L1を鳴らしたオブジェクト周りで、Core/Isolationの領域を定義。
- 各領域の飛跡数(N_{core}/N_{iso})がτ粒子とジェットで異なることを用いて、
 ジェットを効率良く除去する。

HLT Pre-selectionの比較

- ・ ジェット除去率を70%に合わせたとき、FTK有無での比較を行った。
- FTK Pre-selectionはCalo. Pre-selectionと比べて、広いp_T領域でジェットの 除去が可能。
 - → FTK Pre-selectionを用いる事で、低いp_T領域も含めて、より多くの τ粒子を取得する事が可能になった。

まとめと展望

- FTK Pre-selectionにより、低いp_T閾値を維持して、信号感度を保持したまま、
 トリガーレートを充分落す事が出来た。
- Pre-selectionを高速でかけることで、HLT後段のプロセス時間を確保することが 可能になったため、トリガー段階でオフライン同等のτ粒子識別を行う事が可能。 →τ粒子トリガー効率Turn-on-CurveのPlateau領域の改善

10/10