LHC-ATLAS実験における二光子への 崩壊過程を用いたHiggs粒子の性質測定

<u>山口洋平</u>,田中純一, 増渕達也,中村浩二,浅井祥仁 東京大学 秋季大会 高知大学 2013年9月21日

Introduction

o今見えているHiggsはSM Higgsか?

o Coupling測定

– H → γγチャンネルでは大きい信号量が測定されている

o 自然幅の直接測定

- SMなら4 MeV
- m_{yy}ピークの太さからupper limitをつける

 $H \rightarrow \gamma\gamma F \gamma \lambda \lambda \mu$

- o m_w分布にヒッグス質量 (m_H) のピーク ピーク幅 1σ = 1.6 GeV (FWHMで3.8 GeV)
- O Event Selection at least <u>2 photon</u> ←
- 2 photonイベントのpurity = 75% (他はπ⁰ 由来のfake photon混じり)
- SMで期待されるシグナル数: 4.8 x 10² events

photon selection

- $E_T^{1st} > 40 \text{ GeV}, E_T^{2nd} > 30 \text{ GeV}$
- |η| < 2.37
- ・ "tight" ID (シャワーの形状)
- 他のactivityからisolateしている

Productionとイベントカテゴリー

- Productionごとにcouplingが異なる
- それぞれ信号を選り分けられれば、各processに対して信号量が測定できる
- productionごとの断面積 x 分岐比 / SM expected = signal strength (µggF, µVBF, ...)を測るのが、今回の目的
- process間の混ざり合いの無いような、カテゴリー分けが重要

Productionとイベントカテゴリー

Coupling測定

- o Signal strength (µ)を測定
- o μに対してmaximum likelihoodを探す
- o ケース1: production processによらず、μが共通だと仮定
 - Higgs mass (m_H) はfree

- test statistic:
$$q_{\mu} = -2 \ln \lambda (\mu) = -2 \ln \frac{L(\mu, \hat{m}_{H}, \hat{\theta})}{L(\hat{\mu}, \hat{\hat{m}}_{H}, \hat{\theta})}$$
, $^{ltbest fit value}$

o ケース2: production processごとにµを設定 (µggF+ttH, µVBF, µVH)

- VBFのµを調べるときは、ggF, VH, ttHのµはfree
- ggF, VHの場合も同様

系統誤差

Event migration = イベントのカテゴリー分けの不確かさ

測定結果(ケース1)

(2.4 σ)

統計誤差~系統誤差 > 系統誤差の評価が非常に重要

系統誤差の評価

theoryなので、解析の努力で減らせない → 他の系統誤差をつぶしていくしかない

例えばphoton ID uncertainty (±2.4 % on signal yield) は、EMカロリメータ内の シャワー形状のData/MCの一致を改善させて、減らせるかもしれない

Production別のsignal strength (ケース2)

$$\hat{\mu}_{ggF+ttH} = 1.6 \begin{array}{c} +0.3 \\ -0.3 \end{array} (\text{stat.}) \begin{array}{c} +0.3 \\ -0.2 \end{array} (\text{syst.}) \\ \hat{\mu}_{VBF} = 1.7 \begin{array}{c} +0.8 \\ -0.8 \end{array} (\text{stat.}) \begin{array}{c} +0.5 \\ -0.4 \end{array} (\text{syst.}) \\ \hat{\mu}_{VH} = 1.8 \begin{array}{c} +1.5 \\ -1.3 \end{array} (\text{stat.}) \begin{array}{c} +0.3 \\ -0.3 \end{array} (\text{syst.}) \end{array}$$

processによらずµ>1

 VBFには、event migrationも効いている (+0.4 -0.3)

10

$\mu_{ggH+ttH}$ / μ_{VBF+VH}

μ は各processで一定か? $\rightarrow \mu$ の比をscanする

生成側はSMと無矛盾 SMとの差を作っているのは崩壊側か?

- $m_{\gamma\gamma}$ のピーク \rightarrow SMの自然幅を測れるほど感度はない
- しかしSMでなければ、太い自然幅が見える可能性も
- Higgsの自然幅をscanし、maximum likelihoodを探す

• test statistic: $q_w = -2 \ln \lambda(w) = -2 \ln \frac{L\left(w, \hat{\mu}, \hat{m}_H, \hat{\theta}\right)}{L\left(\hat{w}, \hat{\hat{\mu}}, \hat{\hat{m}}_H, \hat{\hat{\theta}}\right)}$

w: 自然幅 µ, m_Hはfree

測定結果

- SM expectedの信号量より多く(µ = 1.65)、期待されるmass resolutionより
 0.3 GeV小さい (resolution uncertainty 0.97σ分)
- 大きいµと細いピークが自然幅の上限値を下げている

- 統計誤差が支配的
- 系統誤差~100 MeV < 統計誤差 / 10
- 系統誤差にはmass resolutionのuncertaintyが効く

まとめ

H → γγチャンネルで 7 + 8 TeV (4.8 + 20.7 fb⁻¹) のデータを解析
 Coupling測定

$$\hat{\mu} = 1.65 \pm 0.24 (\text{stat.}) \begin{array}{c} +0.25 \\ -0.18 \end{array} (\text{syst.})$$

- process別にµを見ると、

$$\hat{\mu}_{ggF+ttH} = 1.6 \begin{array}{c} +0.3 \\ -0.3 \end{array} (\text{stat.}) \begin{array}{c} +0.3 \\ -0.2 \end{array} (\text{syst.})$$

$$\hat{\mu}_{VBF} = 1.7 \begin{array}{c} +0.8 \\ -0.8 \end{array} (\text{stat.}) \begin{array}{c} +0.5 \\ -0.4 \end{array} (\text{syst.})$$

$$\hat{\mu}_{VH} = 1.8 \begin{array}{c} +1.5 \\ -1.3 \end{array} (\text{stat.}) \begin{array}{c} +0.3 \\ -0.3 \end{array} (\text{syst.})$$

- 系統誤差はtheoryが支配的
- VBF, VHのcouplingにはevent migrationのstudyが重要
- 。 自然幅の直接測定
 - 上限值: 1.7 GeV (observed), 5.8 GeV (SM expected)
 - 統計誤差が支配的
 - 大きい信号量、狭いm_wピークが上限を小さくしている
- o さらなるデータ(14 TeV)が期待される

back up

thrust axis

μとm_Hの相関

自然幅とm_H, µの相関

SM expected (m_H = 125 GeV) について計算

Coupling測定 (詳細)

- o Signal strength (µ, SMとの信号量の比)をscanし、maximum likelihoodを探す
- o ケース1: production processによらず、断面積が一定だと仮定
 - productionに共通のµを使用
 - Higgs mass (m_H) はfree

- test statistic:
$$q_{\mu} = -2 \ln \lambda (\mu) = -2 \ln \frac{L(\mu, \hat{m}_{H}, \hat{\theta})}{L(\hat{\mu}, \hat{\hat{m}}_{H}, \hat{\theta})}$$

[^] は μ のときのbest fit value [^] は $\hat{\mu}$ でのbest fit value

- o ケース2: production processごとにµを設定 ($\mu_{ggF+ttH}, \mu_{VBF}, \mu_{VH}$) - VBF用のtest statistic: $q_{\mu_{VBF}} = -2\ln\lambda(\mu_{VBF}) = -2\ln\frac{L\left(\mu_{VBF}, \hat{\mu}_{ggF+ttH}, \hat{\mu}_{VH}, \hat{m}_{H}, \hat{\theta}\right)}{L\left(\hat{\mu}_{VBF}, \hat{\mu}_{ggF+ttH}, \hat{\mu}_{VH}, \hat{m}_{H}, \hat{\theta}\right)}$
 - VBFのµを調べるときは、ggF, VH, ttHのµはfree
 - ggF, VHの場合も同様

自然幅とm_H, μの相関 (observed)

- 本来無相関のはずだがm_Hは自然幅によって変わる
- m_w分布が統計のふらつきで、相関があるように見えている