LHC-ATLAS実験における 1レプトンモードでの 超対称性粒子の探索

佐々木雄一, 金谷奈央子^A, 浅井祥仁 (東大理, 東大素セ^A)

> 2013 September 23 JPS (Kochi University)

ターゲットとする超対称性粒子事象

- ▶ 生成過程:強い相互作用で生まれる超対称性粒子
- トポロジー: 1lepton+MissingEt+多数のJet
- ► 1lepton :
 - ▶ 1本のLeptonを要求することで、
 QCD MultiJetの量をコントロール可能
 →"発見"の際には不可欠なチャンネル
- Missing Et :

- ► R-Parityを保存するSUSYでは、中性のLSP(Lightest SUSY Particle)が検出器外 に逃げる→観測されるエネルギーにアンバランス(E^{-miss})が生じる
- ► 多数のJet:
 - ► 右上図のように、強い相互作用で生じるSUSYからは、一般に多数のJetが生じる

▶ p_T>25GeVのElectron or Muonが、丁度1本ある事象が本研究のターゲット。

- ▶ GluinoもしくはSquarkがはじめに対生成される事象を考える
- ► その事象のトポロジー(p_T^{jet}, E_T^{miss}, etc...)は、超対称性粒子たちの質量を決めることで自動的に決定される

3

- ▶ Simplified Modelの注目する領域(____)での平均感度を 最大化するようにSignal Regionのカットを選ぶ
- ▶ 様々なカットを試して、平均感度の分布を作る
- ▶ 平均感度の高い集団(オレンジ)がどのようになっているかを見てカットを決定

Tight SR:Jet5本以上, p_T^{jet1}>100, p_T^{jet2-5}>40, m_T>150, E_T^{miss}>350, m_{eff}>800

 $m_T = \sqrt{2p_T^{lep} E_T^{miss} (1 - \cos \Delta \phi)}$

 $m_{\rm eff} = p_T^{lep} + E_T^{miss} + \sum p_T^{jet}$

jets

- ▶ Tight SRはカットが強すぎて、Squark-Squark productionで感度が良くない
- この部分()の平均感度を向上させる新しいSignal Regionを追加 (Squark-Squark production向け)
- ▶ 平均感度の高い集団(オレンジ)がどのようになっているかを見てカットを決定

Loose SR: Jet3本以上, p_T^{jet1}>100, p_T^{jet2,3}>40, m_T>150, E_T^{miss}>250, m_{eff}>500

► <u>W+jets</u> :

W →lv と崩壊する事象は、LeptonとNeutrino(E_T^{miss})を伴い、背景事象となる モンテカルロにより見積もる(Control Regionで規格化)

► <u>ttbar</u> :

ttbar → bb lv lv と崩壊する事象のうち、1本のLeptonのみが検出された場合、背景事 象となる。2つのNeutrinoにより大きなET^{miss}、mTを持つ ttbar → bb lnu qq と崩壊する事象は、W+jets同様に背景事象となる <u>モンテカルロにより見積もる (Control Regionで規格化)</u>

► <u>QCD multi-jet</u>事象:

QCD multi-jet事象のjetが誤ってleptonとして誤検出されてしまうと背景事象となる Dataに誤検出率を掛けあわせて見積もる

► その他(Z+jets、Single top、Diboson、ttbar+V):

<u>モンテカルロにより見積もる</u>

🖌 Control Regionの決定

- Control Regionにおいて、主要なバックグラウンド事象(W+jets, ttbar)の
 モンテカルロを規格化する
 → モンテカルロ・シミュレーションの不定性をデータでキャンセル
- ▶ (1) Signal Regionと十分近く、(2) Signalが混ざり込まないような領域を設定
 → Signal Regionと
 - Jet数、m_{eff}を共通にして、
 - m_T, E_T^{miss}どちらも 低い領域を設定
- ▶ Signalの混ざり込みは、
 注目している領域で
 <10-20%程度
 - → 問題ない

Validation Regionの決定

- ▶ Signal Regionには"サイドバンド"が取れない
 → モンテカルロとデータの一致具合を確認しづらい
- ▶ Signal Regionを挟み込むような領域を作り、そこでモンテカルロとデータの一致具合を確認する
 - \rightarrow Validation Region

Yuichi Sasaki (Tokyo)

9

Yuichi Sasaki (Tokyo)

- ▶ Signal Regionでの m_{eff}の分布が下図。有意な超過は無い
- ▶ m_{eff}は生成された超対称性粒子の質量にほぼ比例する性質がある
 - → 広い範囲の超対称性粒子に感度を持たせるため、 図と同じbinningで制限を計算する

- ► Signal Region中の事象数が以下(エラー=統計+系統)
- ▶ Signal Regionはttbarが主に占める
- ▶ データに有意な超過は見られない

(Minor backgroundは省略)

	El-ch	Mu-ch
Tight SR		
Obs.	8	7
Total Bkg.	7.5±1.4	7.7±1.4
ttbar	5.0±1.4	5.1±1.4
W+jets	0.6±0.5	0.7±0.5
Loose SR		
Obs.	92	101
Total Bkg.	96±10	116±15
ttbar	53±10	50±9
W+jets	25±5	30±6

- ▶ 検出器起源とモンテカルロの不定性の2つに分けられる
- ► Control Regionで規格化することで、大きな系統誤差はキャンセル Control RegionからSignal Regionの事象数を外挿する際に付く不定性を評価
- ▶ ただし、Tight SRでは統計誤差が感度を決める主要因

検出器起源:

- JetのEnergy Scaleの不定性:~20%
- LeptonのEfficiency, Resolution等:<2%

- PileUp等:<2%

モンテカルロの不定性:

(Generatorの設定パラメータを変化さ

せて評価)

- -W+jetsの不定性(CR->SR):<15%
- ttbarの不定性 (CR->SR

主にParton Shower由来):~15%

- その他のモンテカルロ:30%を適用

↓ 超対称性粒子に対する制限

- ▶ Gluino-Gluinoが対生成されるようなモデルに対する制限を計算した
- ► マジェンタ: Tight SR、青: Loose SR それぞれ単独での制限を表す

→ 相補的に制限領域を広げていることが分かる

 黄色+黒線:期待される制限の中心とその不定性。赤線:観測された制限 水色:2011年(7TeV, 4.7fb⁻¹)での結果

- ▶ 同様にSquark-Squarkが対生成されるようなモデルに対する制限
- ► Gluinoの崩壊から出てくる多数のJetが無くなるため、標準理論事象との区別が難しく なる → 質量に対する制限は弱くなる
- ▶ Loose SRが有効に作用して制限を広げている
- ▶ m(~q)=0.6-0.8TeV程度を棄却

squark-squark对生成

- ▶ sqrt(s)=8TeV, 20.3fb⁻¹のデータを用いて、強い相互作用によって生まれる超対称性粒 子を、1leptonを伴う終状態で解析した
- ► 系統的なSignal Region決定法を開発。異なるトポロジーをターゲットとして、2つの Signal Regionを設定した
- ► モンテカルロによってデータが正しく再現されていることを確認するため、Validation Regionを設定。問題なく再現されていることを確認した
- ▶ Signal Regionにデータの超過は見られなかった
- ► Simplified Modelに対して、生成された超対称性粒子質量の制限を導いた
 - ▶ gluinoに対して:1.0-1.2TeV程度
 - ▶ squarkに対して: 0.6-0.8TeV程度

