

LHC-ATLAS実験における ヒッグス粒子を崩壊過程に含む 超対称性粒子の探索

<u>永井遼</u>、陣内修、金谷奈央子^A、浅井祥仁^B 東工大理、東大素セ^A、東大理^B

Ryo Nagai (Tokyo Tech)

日本物理学会秋季大会@高知大学

1

Ryo Nagai (Tokyo Tech)

超対称性 (SUSY)

・標準模型粒子との違いはスピンのみ―質量は同じ

– これまで未観測 → 超対称性の破れ (Rパリティ保存なら)最軽量超粒子は安定

解析のターゲット

- LHCの2012年運転時、重心系エネルギー√s = 8 TeV , データ量 20.3 fb⁻¹ のデータを用いる
- ・ゲージ粒子の超対称パートナー p(ゲージーノ)が陽子・陽子衝突で 生成され、崩壊過程の中でWhを 終状態に持つ事象をターゲット $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow Wh + \tilde{\chi}_1^0 \tilde{\chi}_1^0$ p

- <u>ターゲットとする理由は主に2つ</u>

(1) ミューオン *g* – 2 のズレのSUSYによる説明

(2) Higgs質量~125 GeV を受けた、解析の変更の必要性

4

なぜ Wh なのか (1)

ミューオン g - 2のズレ

T. Moroi, Phys. Rev. D 53, 6565-6575(1996)

Muon g-2 Collaboration の最終結果と 現在最新の理論計算結果 K. Hagiwara, et al. arXiv:1105.3149

・スレプトン($\tilde{\ell}, \tilde{v}$)、ゲージーノ($\tilde{\chi}$)が軽いことが説明の条件 **→** O(100) GeV で良い説明…LHCで検証可能

•特に、
$$m_{\tilde{\ell}} > m_{\tilde{\chi}_2^0} > m_{\tilde{\chi}_1^0}$$
のときは $\tilde{\chi}_2^0 \to Z/h + \tilde{\chi}_1^0$ が有効

5

なぜ Wh なのか (2)

なぜ Wh なのか (2)

・最軽量、2番目に軽量な中性超粒子(LSP, NLSP)が \widetilde{W}^0 or \widetilde{B}^0 -like

→ Δm > m_h (~ 125 GeV) で Higgsに崩壊可能

・LSP, NLSPの成分によって $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ の質量に対する制限が弱くなる

Ryo Nagai (Tokyo Tech)

日本物理学会秋季大会@高知大学

8

信号領域の設定

• τ_h の個数に応じて信号領域を設定

	1 au-region	2 au-region	1
Lep flav/sign	$ au_{h}^{\pm}\ell^{\mp}\ell'^{\mp}$	$ au_{m{h}}^{\pm} au_{m{h}}^{\mp} \ell$	10 ⁻¹
Z boson	Veto (ee)	-	10
B-jet	Veto	Veto	> 10 ³ 9
E ^{miss} T	> 50 GeV	> 60 GeV	10 ² 10 ²
Lep pT	> 30 GeV	> 25 GeV	≚ 10 ⊡ 1
Σ pT (2 <i>ℓ</i> /2τ)	> 70 GeV	> 110 GeV	10 ⁻¹
$M_{\ell\tau}/M_{\tau\tau}$	< 120 GeV	70-120 GeV	10 ⁻²

Ryo Nagai (Tokyo Tech)

主要な背景事象

WZ ZZ	終状態のレプトン数が信号と同じかそれ以上 見分けがつかない(irreducible)	MCによる見積もり
ttbar V+jet	終状態のレプトン数が信号より少ない fakeにより信号と同じになり得る(reducible)	実データによるfakeの評価

Ryo Nagai (Tokyo Tech)

背景事象の見積もり (1) ―ジェット起源―

- ・ジェット起源の背景事象 → QCD効果が大きくMCでの見積もりは難しい
- Fakeは厳しいカット(isolationあり)を要求すれば原理的には排除可能
 - → 実際には一定割合(Fake rate) で通過する:これを逆手にとって見積もる。

背景事象の見積もり(2)

• Matrix Method による fake の見積もりと MC を用いた区別のつか <u>ない背景事象(irreducible background)</u> を合わせて、 信号領域と異なる確認領域で確認を行う

背景事象の見積もり(2)

 Matrix Method による fake の見積もりと MC を用いた区別のつか ない背景事象(irreducible background) を合わせて、
信号領域と異なる確認領域で確認を行う

系統誤差の見積もり

- •系統誤差は種類毎、イベント毎に領域に合わせて見積もる
 - Irreducible : 理論断面積、MCの統計、検出器の検出効率の不定性等
 - Reducible : Fake rate、検出器の検出効率の不定性等

<u> 1τ -region</u>

- Cross-section : 11.4%
- MC/data Stat.: 7.1%
- Tau Fake Rate : 5.4%
- MC Generator : 4.5%
- Trigger : 3.4%

Total ~20%

<u>2τ-region</u>

- MC/data Stat. : 8.1%
- Tau Fake Rate : 4.0%
- Cross-section : 1.0%
- Jet Energy Scale : 0.8%
- MET scale : 0.6%

信号領域における予想値

- •現段階で信号領域は開けていない
- ・以上の見積もりを信号領域に拡張した場合

SUSY ref. 1 : SUSY(Wh) $m_{\tilde{\chi}_2^0} = 140 \text{ GeV}$, $m_{\tilde{\chi}_1^0} = 10 \text{ GeV}$ SUSY ref. 2 : SUSY(Wh) $m_{\tilde{\chi}_2^0} = 152.5 \text{ GeV}$, $m_{\tilde{\chi}_1^0} = 22.5 \text{ GeV}$

Ryo Nagai (Tokyo Tech)

日本物理学会秋季大会@高知大学

23 Sept. 2013 15

予想される制限領域

1*τ*-reg. + 2*τ*-reg. の予想制限領域

まとめ

- •LHC-ATLAS実験の2012年の運転で収集された重心系エネルギー $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ のデータを用いて、崩壊過程にHiggsを含む ゲージーノ直接生成事象の探索を行っている。
- ・背景事象を見積もり、確認領域において実データを再現していることを確認した。
- LSPとNLSPの質量に対する制限領域の予想値として $m_{\tilde{\chi}^{\pm}_{*}, \tilde{\chi}^{0}_{*}} \lesssim 160 \text{ GeV } を得た。$
- ・信号領域での実データ分布はまだ確認していない。グループの承認 が得られ次第確認する。

背景事象の見積もり (1) ―ジェット起源―

- Matrix Methodを、1番 *p*_T が高いレプトン(*e*, μ)を除く、 残り**2つのレプトン(***e***, μ, τ)**に適用
- Real, fakeの組み合わせによって、行列 *M* が 4 × 4 行列になる。

T: tight, L: loose, R: real, F: fake

17 確認領域

Ryo Nagai (Tokyo Tech)

27 確認領域

Ryo Nagai (Tokyo Tech)

$pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W(\ell \nu) h(b\bar{b}) + \tilde{\chi}_1^0 \tilde{\chi}_1^0$ 解析の現状

