LHC-ALTAS実験におけるソフトレプトンを用いた 超対称性粒子の探索

東工大理、東大理^A、東大素セ^B 野辺拓也、浅井祥仁^A、金谷奈央子^B、久世正弘、 佐々木雄一^A、山中隆志^B

2013年9月24日 日本物理学会秋季大会@高知大学

1

Motivation

 ヒッグス粒子質量の"自然さ"からの要請で、トップ粒子の 超対称性パートナー (スカラートップ=stop)の質量は軽くなる。

 (軽いstopがあるとしたら)なぜ見つからないのか?
 <u>実験的に観測が難しいシチュエーション</u>にある可能性 を考える。

Motivation -cont'd

スカラートップの対生成において、

縮退している場合、崩壊物がソフト(低運動量) になり観測が難しい。

- さらにtとテt1の質量差が小さい場合、b-jetも ソフトになるのでさらに観測が難しい。
- LSP(最も軽いSUSY粒子)がHiggsino-likeな場合、 ^{*}
 ^{*}
 ¹
 と^{*}
 ⁰
 ¹
 の質量差は小さくなる

(G. F. Giudice, A. Pomarol, Phys.Lett. B372 (1996) 253-258)

$$m(\tilde{\chi}_{2}^{0}) - m(\tilde{\chi}_{1}^{0}) = \frac{8}{5} \frac{m_{W}^{2}}{M} + O(1/M^{2}) \qquad m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = \left(\frac{4}{5} - \frac{\sin 2\beta}{5} \frac{\mu}{|\mu|}\right) \frac{m_{W}^{2}}{M} + O(1/M^{2})$$

M: weak gaugino mass
M=1TeV $\mathcal{C}\Delta m$ =5GeV, M=500GeV $\mathcal{C}\Delta m$ =10GeV

(LSP)

 $\widetilde{\chi}^{\pm}$ 1

h

(SP)

e,µ

Current limit on stop pair production

(t, χ[±]1, χ⁰1)の質量スペクトラムがほぼ縮退した領域は、
 現在までのATLAS実験における解析で探索されていない。

$\Delta m(\tilde{\chi}^{\pm_1} - \tilde{\chi}^{0_1}): 5 \text{GeV}(薄緑) \qquad m(\tilde{\chi}^{\pm_1}) = 150 \text{GeV} に固定$ 20 GeV (濃緑)

Strategy

- 2012年に取得した重心系エネルギー8 TeV, 20.1 fb⁻¹のデータを用いる。
- シグナルの特徴: $\tilde{t} \rightarrow b + \tilde{\chi}_1^{\pm} \rightarrow b + \tilde{\chi}_1^0 + (W^* \rightarrow l\nu)$ (+c.c.) 高い横エネルギー欠損(mET)、2つのbjet、ソフトレプトン
- ソフトレプトンの定義: 横運動量が 6(7) < pT < 25 GeVのミューオン(電子)
- $\Delta m = (m_{\chi_1^{\pm}} m_{\chi_1^0}) = 5,20 \text{ GeV} \\ \varepsilon \checkmark \\ \mathcal{F} \neg \mathcal{F} \neg$
- 本講演では、

1. ATLAS-CONF-2013-062で公開されている、2本のb-jetを要求する解析結果;

2. ISR jetを要求する解析(現在進行中);

について述べる。

2bjet type解析

Background estimation

- QCD di-jet事象、Z(vv)+jet (ジェットがレプトンと誤認される)
 →Data driven (see.バックアップ)
- その他のバックグラウンド → Semi-data driven法を用いる。 $N_{SR,data} = N_{CR,data} \times \frac{N_{SR,MC}}{N_{CR,MC}}$
 - Top、W+jetsのそれぞれをenhanceしてコントロール領域(CR)を定義
 - Profile likelihood methodを用いて複数のCRを同時フィット
 - フィット結果を信号領域(SR)に外挿 してバックグラウンドを見積もる。
 (MCのshapeを用い、事象数はCRで データに合わせる。Shapeは理論 計算の誤差を考慮)

信号領域最適化(2bjet type)

- ソフトレプトン要求でZ(vv)+bbバックグラウンドを抑制
- ハードなb-jet 2本を陽にタグし (p_T>60GeV)、 m_{CT}: $m_{CT}^2 (bjet1, bjet2) = [E_{T,bjet1} + E_{T,bjet2}]^2 - [\overrightarrow{p_{T,bjet1}} - \overrightarrow{p_{T,bjet2}}]^2$ を用いて信号をenhanceする。
- ff系からの2本のbjetを正しくタグしている場合、top質量からの制限で m_{CT}≤150GeVとなる。Stopとの質量の違いを利用して、m_{CT}>150GeV (for low mass stop)、>200GeV (for high mass stop)を要求するよう最適化
- m_{CT}>150GeVの主な成分:tī (mis-tag c-jet)、W+bb

事象選別 (2bjet type)

ターゲットとするスカラートップの質量に合わせて、2つの信号領域

を用意 (LOW MASS: $m_{\tilde{t}} \leq 400 \text{GeV} / \text{HIGH MASS: } m_{\tilde{t}} \gtrsim 400 \text{GeV}$)

	LOW MASS SR	Top CR	W+jets CR
lep l Pt	[6(7), 25]GeV	>25GeV	
mET	>200GeV	>150GeV	>200GeV
jet2Pt	>60GeV		
Nbjet	2		0
jet3Pt	<50GeV		
m _{CT}	>150GeV		
$H_{T,2}$	<50GeV		
$\Delta \phi_{min}$	>0.4		

	HIGH MASS SR	Top CR	W+jets CR
lep I Pt	[6(7), 25]GeV	>25GeV	
mET	>300GeV	>150GeV	>300GeV
jet2Pt		>60GeV	
Nbjet		2	0
jet3Pt	<50GeV		
m _{CT}	>200GeV		
$\Delta \phi_{min}$		>0.4	

コントロール領域 (2bjet type)

- Hard lepton コントロール領域 (pT>25GeV)
- Top region : tt (charm)を制御するため、b-tag + m_{CT}>150GeVを課す。ttのpurity ~40%
- W+jets region : b-veto。σw+bb/σw+jj比の誤差を不定性として考慮。W+jetsのpurity >90%

破線:m=300GeV,m(Ĩ+」)=120GeV,mLSP=100GeVの信号

スカラートップ質量に対する制限

- 2つの信号領域をcombine (best expected CLs value)
- 95% C.L.排除領域
- Stop mass < ~470 GeVを棄却した。

(LSP mass < 150 GeV@ Δm=5 GeV, <210 GeV@Δm=20 GeV)

ISR+1bjet type解析

信号領域最適化 (ISR + 1bjet type)

- ターゲット:Stopとテt1の質量もほぼ縮退している場合
- 非常に高いp_T(>180 GeV)のISR (initial state radiation)ジェットを要求し、
 反対側にブーストされた系を選ぶ事でソフトなb-jetを拾う。
- 低いprでのb-tag効率を考慮して、2本ではなく少なくとも1本のb-jetを要求

事象選別 (ISR + 1bjet type)

• ターゲットとする信号がどの程度縮退しているかに合わせて、2つの

信号領域を用意 (MODERATE: 50<ΔM<80GeV / COMPRESSED: ΔM<50GeV)

	MODERATE SR	Top CR	W+jets CR	
lep I Pt	[6(7), 50]GeV	>25GeV		
jet l Pt	>180 GeV			
N _{jets}	>=3			
mET	>300GeV	>150GeV	>300GeV	
mET/m _{eff}	>0.3			
mT	>100GeV	[40, 80]GeV		
N _{bjets}	>=I, but leading j	t leading jet is not b-tagged 0 (b-veto)		
	COMPRESSED SR	Top CR	W+jets CR	
lep l Pt	COMPRESSED SR [6(7), 50]GeV	Top CR >25	W+jets CR GeV	
lep l Pt jet l Pt	COMPRESSED SR [6(7), 50]GeV	Top CR >250 >180 GeV	W+jets CR GeV	
lep I Pt jet I Pt N _{jets}	COMPRESSED SR [6(7), 50]GeV	Top CR >250 >180 GeV >=2	W+jets CR GeV	
lep I Pt jet I Pt N _{jets} mET	COMPRESSED SR [6(7), 50]GeV >370GeV	Top CR >250 >180 GeV >=2 >150GeV	W+jets CR GeV >370GeV	
lep I Pt jet I Pt N _{jets} mET mET/m _{eff}	COMPRESSED SR [6(7), 50]GeV >370GeV >0.35	Top CR >250 >180 GeV >=2 >150GeV -	W+jets CR GeV >370GeV	
lep I Pt jet I Pt N _{jets} mET mET/m _{eff}	COMPRESSED SR [6(7), 50]GeV >370GeV >0.35 >90GeV	Top CR >250 >180 GeV >=2 >150GeV - [40, 80	W+jets CR GeV >370GeV - D]GeV	

コントロール領域 (ISR + 1bjet type)

- Hard leptonコントロール領域 (pT>25GeV)
- 40<m_T<80GeVを要求し信号領域と排他的に定義
- Top : b-tag. tt *O*purity ~60%, W+jets : b-veto. W+jets *O*purity ~85%

バックグラウンド見積もりの結果

- 主な系統誤差:
- ttbar: CR→SRの誤差~10%
- ジェットエネルギー分解能~5%
 など
- 信号領域の主なバックグラウンド:ttbar (~50%)
- 確認領域 (VR) にフィット結果を外挿し、妥当性を確認した(<1σ)

予想される感度

- Δm=20GeVベンチマークで予想される95% C.L.排除領域を破線でしめす。
 (Δm=5GeVはレプトンacceptanceによる制限から感度が無い)
- ・ 質量が縮退した領域に感度が予測される。

 Stop mass < 260GeV / ΔM(stop-LSP)<70 GeVの領域 (2bjet解析ではカバーできない領域) をカバー

- 現在信号領域・コントロール領域の最終確認中
- 全て終わり次第信号領域のブラインドを開ける予定

まとめ

- ソフトレプトンを用いた解析は縮退した信号に対して感度が高い
- スカラートップ粒子の対生成を $\tilde{t} \rightarrow b + \tilde{\chi}_{1}^{\pm}$ L $\tilde{\chi}_{1}^{0} + (W^* \rightarrow l\nu)$ 崩壊モードを用いて探索
- ATLAS検出器で2012年に取得された8 TeV
 20.1 fb⁻¹のデータを使用
- 2bjetタイプ解析:
 - Δm=20 GeVではStop mass < 470GeV、
 LSP mass < 210GeVに制限を与えた。
 さらなるカットの最適化を行う。
- ISR+bjetタイプ解析:
 - ソフトなbjetを拾うように事象選別を最適化 - tとLSPが縮退した領域 (ΔM<70 GeV)に感度が 予想される
 - 最終チェック中。終わり次第信号領域を開ける

Fakeの見積もり(Matrix Method)

• Fakeレプトンは以下の関係から見積もる

$$N_{\text{fake}}^{\text{tight}} = \epsilon_{\text{fake}} \frac{\epsilon_{\text{real}} N_{\text{fail}} - (1 - \epsilon_{\text{real}}) N_{\text{tight}}}{\epsilon_{\text{real}} - \epsilon_{\text{fake}}}$$

- N_{fail}: ベースライン条件は満たすがisolationを満たさないレプトンの数
- N_{tight}: isolation条件を満たすレプトンの数
- Isolation: $\sum_{\Delta R < 0.3} p_{T}^{trk} / p_{T}^{lepton} < 0.16(0.12)$ for 電子(ミューオン) (トラックはp_T>400 MeV)
- €real (real efficiency): Z→l+l・サンプルを用い、ベースラインレプトンに 対してisolationカットの効率を測定
- (p_T, η)で区切った各phase spaceでパラメータを見積もっておき、pure data-drivenでFakeバックグラウンドを見積もる