LHC-ATLAS実験における VBF H→WW→lvlv を用いたヒッグス粒子の探索

<u>岡村航</u>、花垣和則 大阪大学

q

q

Vector boson fusion (VBF) Higgs

- ヒッグス粒子の生成・崩壊過程に湯川結合が関与
 しない
 - ヒッグス粒子とゲージボソンの結合定数を測定 できる

今後のヒッグス粒子の研究で重要なチャンネル

Vector boson fusion (VBF) Higgs

- 前方・後方領域に 2 本のジェット

- 中央領域にジェットが存在しない

これらを要求する事で VBF 事象を選択(VBF 事象選択)

事象選別

- Number of jets >= 2
- 背景事象除去の事象選択
 - Missing ET > 20 GeV → Z+jets 事象などを除去
 - Number of b-jets = 0 → Top 事象を除去
 - etc.
- Higgs 事象選択
 - MII < 50 GeV
 - $\Delta \phi \parallel < 1.8$
- VBF 事象選択
 - Mjj > 600 GeV
 - $\Delta Y_{jj} > 3.6 (Y : Rapidity)$
 - Central jet veto
 - etc.

事象選別

- Number of jets >= 2
- 背景事象除去の事象選択
 - Missing ET > 20 GeV → Z+jets 事象などを除去
 - Number of b-jets = 0 → Top 事象を除去
 - etc.
- Higgs 事象選択
 - MII < 50 GeV
 - $\Delta \phi II < I.8$
 - VBF 事象選択 **全て満たす。 VBF like イベント**
 - Mjj > 600 GeV
 - ΔYjj > 3.6 (Y : Rapidity)
 - Central jet veto 全ては満たさない。

- etc.

(VBF 解析)

ggF like イベント

(ggF 解析)

9

全ての事象選択後の数 (MC)

	Higgs			WZ/ZZ/	TThem	Single	7±iota	
	ggF	VBF(+VH)	••••	Wy	TTDar	top	Z+jets	vv i jets
VBF like	1.0	4.4	1.9	0.2	6.7	I.8	0.5	1.1
	± 0.1	± 0.1	± 0.2	± 0.1	± 0.9	± 0.6	± 0.2	± 0.3
ggF like	41.0	18.9	9.	71.4	674.2	71.4	198.3	136.1
	± 0.7	± 0.5	± 2.6	± 4.9	± 10.4	± 3.7	± 5.8	± 3.4

- VBF like イベント
 - VBF 事象が優勢的に選択されている (S/B ~ 0.36)
 - Top 事象が主な背景事象
- ggF like イベント
 - ggF事象は少なくない (S/B~0.032)
 - Top と Z+jets 事象が主な背景事象

背景事象を見積る手法

- 見積りたい背景事象ための領域、control region (CR) を定義
- 例えば Top 事象の場合、b-jet を要求 補正 tt→blvblv $H \rightarrow WW \rightarrow |v|v$ lop SR Signal Тор CR Ρ # b-jets 0 (b-veto) (b-tag)
 - CR のデータと MC を用いて、signal region (SR) の

Ρ

MC を補正する事で、SR の背景事象を見積もる

 $\frac{N_{data}^{CR} - N_{MC,others}^{CR}}{N_{MC,Top}^{CR}}$ - $N_{Est,Top}^{SR}$ $\times N^{SR}_{MC,Top}$ N^{CR}_{data} N^{CR}_{MC,others} : MC except Top in CR N^{CR}MC, Top : MC Top in CR N^{SR}MC,Top : MC Top in SR CR からの scale factor (SF) 今後呼ぶ。

N^{SR}Est, Top

: Estimated Top in SR

: data in CR

Top の見積り (VBF 解析)

- Top control region (CR)
 - VBF 事象選択の前で number of b-jets = I を要求
 - ▶ 内訳 :Top ~ 96 %, others ~ 4%
- Mis-modeling on the forward jets

Scale factor (SF) at each	cut stage
------------------	-----------	-----------

	U
Cut stage	SF
Exactly I b-tagged jet	1.02 ± 0.01
Mjj > 600 GeV	0.75 ± 0.03
∆Yjj > 3.6	0.72 ± 0.04
Other VBF selections	0.54 ± 0.08

VBF事象選択後の SF を signal region に適用する。

Top の見積り (ggF 解析)

• Top control region (CR)

Events / 10 GeV

Data / SM

- Higgs 事象選択の前で MII > 90 GeV を要求
 - ▶ 内訳:Top ~ 78%,WW ~ 15%, others ~ 7%
- 補正 Top scale factor : 1.02 ± 0.03 Transverse mass (MT) の定義 MT in Top CR where SF is applied lop $M_T = \sqrt{(E_T^{ll} + E_T^{miss})^2 - (\mathbf{p_T^{ll} + E_T^{miss}})^2}$ **ATLAS work in progress** SR 300 $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 20.7 \text{ fb}^{-1}$ $E_T^{ll} = \sqrt{(p_T^{ll})^2 + m_{ll}^2}$ CR H→WW*→evμv/μvev +≥ 2j 250 aF [125 GeV] KS Prob = 47.5% 200 <'50 GeV' > 90 GeV 150 100 (b-veto) (b-veto) 50F データと MC はよく一致している。 1.4 1.2 **CRに b-jet veto** を要求する事で、 0.8 0.6 100 150 200 250 300 400 n 50 350 **b-tagging** に関する系統誤差を~0% *m*_τ [GeV]

Z+jets の見積り (ggF 解析)

- Z+jets control region (CR)
 - Higgs 事象選択の前で、MII < 50 GeV と ΔφII > 2.8 を要求
 - ▶ 内訳: Z+jets ~ 72%, Top ~ 17%, others ~ 11%
 - Z+jets scale factor : 0.86 ± 0.07

- データが blind されていない領域のみでの比較

	Higgs	ww	WZ/ ZZ/WY	Тор	Z+jets	W+jets	BG	Data	Data/ BG
VBF like	0.1	0.6	0.1	I.5	0.0	0.0	2. I	2.0	0.9
	± 0.0	± 0.1	± 0.1	± 0.4	± 0.0	± 0.0	± 0.4	± 1.4	± 0.7
ggF like	10.4	38.5	19.4	276.5	93.7	68.7	496.8	466.0	0.9
	± 0.4	± 1.5	± 3.3	± 10.1	± 8.4	± 2.5	± 13.9	± 21.6	± 0.1

データと MC はよく一致している。

結果 (期待値)

- VBF like イベントでのVBF H→WW→lvlv 探索
 - 期待される発見感度:~I.3 σ
 - 主な系統誤差に、Topのmis-modelingやb-tagging efficiencyの不定性がある。
- ggF like イベントを H→WW→lvlv 解析に導入
 - 期待される発見感度と信号強度 (µ)の測定精度

	w/o ggF in 2 jets category	w/ ggF in 2 jets category	
Expected significance	2.95 ~ <mark>5%</mark>	Up 3.11	
Total uncertainty on $\mu = 1$	+0.40 <mark>~ 7% [</mark> -0.35	Down +0.37 -0.33	
		$\mu = \frac{\text{Observed nur}}{\text{Expected SM}}$	nbo Hig

まとめと結論

- H (→WW) + 2 jets イベントをVBF 事象選択で分類
 - VBF like イベントと ggF like イベント
- VBF like イベントでは、VBF H→WW→lvlv の探索
 - 期待される発見感度は~I.3 σ
 - 更に感度を上げるために、事象選択の最適化や Top 事象 (主な系統誤差) の理解が必要
- 2 jets カテゴリーの ggF like イベントを新しい解析
 チャンネルとして H→WW→lvlv 解析に導入
 - H→WW→lvlvのµの測定精度や発見感度を向上
 できる

backup

LHC / ATLAS 検出器

- LHC
 - CERN にある陽子・陽子衝突型円形加速器
- ATLAS 検出器
 - LHCの衝突点のIつに置かれた汎用粒子検出器
 - ▶ ヒッグス粒子の研究や標準模型を超える物理

LHC / ATLAS の状況

- LHC / ATLAS の現状
 - 2011年に7TeVで~5fb⁻¹、2012年に8TeVで

~21 fb⁻¹のデータを取得

- 2013、2014年は長期シャットダウン
- LHC / ATLAS の今後
 - 2015 年から I3 (I4) TeV のランが始まり、2017 年 までに 50~100 fb^{-|}のデータを取得予定

Top の見積り (ggF 解析) -[I]

- Top CR
 - VBF 事象選択の前で number of b-jets = I を要求

