21aSD-4

LHC-ATLAS実験における W/Z粒子との随伴生成からの H→WW→lvlv過程を用いた ヒッグス粒子の探索

久保田隆至、Elisabetta Barberio, Pere Rados, Joel Smith (メルボルン大学) 他 ATLAS Collaboration

> 日本物理学会秋季大会@高知大学 2013年9月21日

アウトライン

- 2012年のデータ(8TeV, 20.7 fb⁻¹)を用いた解析の概要
 - EPS-HEP 2013で報告
 - CONF Note (<u>http://cds.cern.ch/record/1562933</u>)
- Contents
 - ヒッグス粒子のW/Z随伴生成
 - WH解析
 - ZH解析
 - (W/Z)H解析結果

- ヒッグス粒子とゲージボソンの結合に感度
 - ・ 特にWHはヒッグスとのみ2箇所で結合→アノマリに感度が高い

(W/Z)H過程探索状況

- 単独では"未発見"
- ・ ATLAS実験のH→bbモードでの探索(ATLAS-CONF-2013-079)
 - m_H = 125 GeV近傍での排除が間近
 - 今後は複数崩壊モードのcombinedが重要

WH解析

 $\Delta R = \sqrt{\eta^2 + \phi^2}$

解析のターミノロジー

レプトン番号付け ヒッグス粒子から
 ユニークな電荷:lep0
 lep0に近い(ΔR):lep1
 残りもの:lep2

W粒子から

- OSSF レプトン対を持つ
 - Z-enriched samples
- OSSF レプトン対を持たない
 - Z-depleted samples

OSSF (Oppositely Singed Same Flavor) 背景事象の種類が異なる→解析も異なる

事象選別

• 背景事象

- 3本の実レプトン: *W(Z/γ*), ZZ*, VVV*
- フェイクレプトンを含む: WW, Z+jets, top, bb, cc, W+jets

日本物理学会秋季大会@高知大学

カット変数の分布

Z-depleted、高いE^{miss}_{T,Rel}領域にexcess

カット変数の分布

• Z-depleted、signal-likeな△R_{II}領域にexcess

背景事象の規格化

- MC推定をControl regionの情報で規格化(W(Z/γ*), top, Z+jets, ZZ*)
- 4つのcontrol regionを定義して同時にフィット

シグナル領域事象数

W(Z/γ),VVV* が主要な寄与

	Obs.	signal	Total BG	VVV	W(Z/ γ*)	Z+jets	ZZ	Тор
Z-enri.	24	1.42±0.06	25.7±4.1	2.19±0.13	<mark>16.0</mark> ±0.57	4.05±3.97	2.49±0.28	0.65±0.24
Z-dep.	9	0.76±0.04	2.71 ±0.43	1.45±0.09	0.57±0.08	0	0.10±0.03	0.58±0.35

*エラーは統計と測定器由来の系統誤差のみ

Z-depleted信号領域にexcess

系統誤差

- 測定系由来
 - Jet関係(energy scale, resolution, b-tagging efficiency)
 - lepton関係(energy scale, resolution, efficiency)
 - E^{miss}_⊤関係(Jet, leptonの不定性を伝搬、pile-up effect)
 - Luminosity (3.6 %)

表:測定系由来の系統誤差(lumi以外)のまとめ

	VH	VVV	$W(Z/\gamma^*)$	Z+jets	ZZ ^(*)	Тор	Total BG
Z-enriched	3.3 %	4.1 %	3.4 %	4.0 %	10 %	11 %	3.8 %
Z-depleted	3.5 %	3.2 %	6.1 %	0 %	12 %	36 %	7.4 %

• 理論由来

- シグナル事象の断面積不定性
 - Renormalization & factorization scale < 3 % [arXiv:1307.1347]
 - PDF, α_s不定性 < 5 %
 - W粒子の偏極不定性(WH)<3% [arXiv:1203.2165]
- PDF由来のacceptance 不定性:<10%(CRを用いない背景事象のみ)
- VVV k-factor:50%不定性
- 背景事象の同時フィット: WZ (4 %), Z+jets (100 %), top (60 %), ZZ^(*) (14 %)

ヒッグス断面積上限値(WH)

- 95%信頼度でのσ/σ_{SM}の上限値
- CLs using test statistics: profile likelihood $q_{\mu} = -2 \ln \left(\mathcal{L}(\mu, \hat{\theta}_{\mu}) / \mathcal{L}(\hat{\mu}, \hat{\theta}) \right)$
- 2011年解析(http://cdsweb.cern.ch/record/1460390)もcombined

ZH解析

*ZH→ZWW→IIIvIv*解析

- 背景事象:ZZ*がほぼ全て
- 4本のアイソレートレプトンを要求し、下記の事象選択

Signal Selections					
Cut					
$E_{\rm T}^{\rm miss}$ cut	$E_{\rm T}^{\rm miss} > 30 { m ~GeV}$				
$p_{\rm T}^{\ell}$ cuts	highest $p_{\rm T}$ lepton: $p_{\rm T} > 25 \text{ GeV}$				
	second highest $p_{\rm T}$ lepton: $p_{\rm T} > 20 \text{ GeV}$				
	third highest $p_{\rm T}$ lepton: $p_{\rm T} > 15 {\rm ~GeV}$				
	fourth highest $p_{\rm T}$ lepton: $p_{\rm T} > 10 \text{ GeV}$				
Jet multiplicity	$N_{\rm jet} \le 1$				
<i>b</i> -veto	$N_{b-\mathrm{tag}} = 0$				
Mass cuts	$ m_{\ell_2\ell_3} - m_Z < 10 \text{ GeV}$				
	$10 \text{ GeV} < m_{\ell_0 \ell_1} < 65 \text{ GeV}$				
Angular cut	$\Delta \phi_{01}^{\text{boost}} < 2.5$				
Channel separation	2SFOS	1SFOS			
$p_{\mathrm{T4}\ell}$ cut	$p_{T4\ell} > 30 \text{ GeV}$				
$m_{4\ell}$ cut	$m_{4\ell} > 130 \text{ GeV}$				
Overlap removal [6]	remove overlap with $H \rightarrow WW$ analysis				

* $\Delta \phi_{01}^{\text{boost}}$: ヒッグス静止系でのヒッグスからのレプトンのopening angle

*ZH→ZWW→IIIvIv*結果

	ZZ	VVV	Fakes	Total Bkg.	VH(125)	Data
4 leptons	164±6	1.89 ± 0.08	8.8±5.8	175 ± 10	0.89 ± 0.04	182
$E_{\rm T}^{\rm miss}$ and $p_{\rm T}$	41.8±1.6	1.65 ± 0.07	7.8 ± 5.3	51.3 ± 5.6	0.71 ± 0.03	55
Jet multiplicity and <i>b</i> -veto	30.8 ± 1.1	1.30 ± 0.06	0.31 ± 0.11	32.5±1.2	0.52 ± 0.02	35
Mass cuts	2.97 ± 0.15	0.22 ± 0.02	0.05 ± 0.03	3.24 ± 0.16	0.41 ± 0.02	2
Angular cut	1.88 ± 0.12	0.20 ± 0.02	0.04 ± 0.02	2.12 ± 0.12	0.39 ± 0.02	2
1 SFOS pair	0.24 ± 0.04	0.08 ± 0.01	0.00 ± 0.01	0.33 ± 0.05	0.19 ± 0.01	2
Overlap removal	0.23 ± 0.04	0.08 ± 0.01	0.00 ± 0.01	0.32 ± 0.05	0.18 ± 0.01	2
2 SFOS pairs	1.64±0.11	0.12±0.01	0.04 ± 0.02	1.79±0.11	0.20 ± 0.01	0
4ℓ system cuts	0.72 ± 0.07	0.11 ± 0.01	0.04 ± 0.02	0.86 ± 0.08	0.18 ± 0.01	0
Overlap removal	0.70 ± 0.07	0.10 ± 0.01	0.04 ± 0.02	0.84 ± 0.08	0.17 ± 0.01	0

- 9.6 @ m_H = 125 GeV
- 1 σØexcess

ヒッグス断面積上限値: (W/Z)H

• $WH \rightarrow WW \rightarrow IvIv$ (25 fb⁻¹), $ZH \rightarrow WW \rightarrow IvIv$ (20.7 fb⁻¹)

まとめ

- ATLAS検出器を用いた(W/Z)H→WW→lvlv探索
 - − $WH \rightarrow WW \rightarrow IvIv$ (25 fb⁻¹), $ZH \rightarrow WW \rightarrow IvIv$ (20.7 fb⁻¹)
 - 95% 断面積上限值: 3.2 expected (@ m_H = 125 GeV)
 - データのexcessが見られたが2σ以下
- 現在Run1 paperを準備中
 - 本解析の再最適化、アップデート(多変数解析等)
 - 新しいチャンネルを可能な限り加える
 - $WH \rightarrow (SS) / v/v + jets$
 - WH \rightarrow (OS) lvlv + 2 jets
 - $ZH \rightarrow IIIv + 2jets$

– 今後は他の(W/Z)Hチャンネルとのcombinedも重要

バックアップ

WH

背景事象の規格化(WZ, top)

W(Z/γ)* CR; *Z* vetoを反転

top CR: b-taggedジェットを要求

日本物理学会秋季大会@高知大学

背景事象の規格化(*ZZ^(*), Z+jets*)

ΖH

日本物理学会秋季大会@高知大学

 $WH \rightarrow WWW$

[arXiv: 1201.3084]