LHC-ATLAS 実験における H->WW->lvlv を用いた ヒッグス粒子の性質測定のための背景事象の研究

岸本巴、藏重久弥、山崎祐司、Li Yuan、^A 增渕達也、^B 吉原圭亮

神戸大理、 А 東大素セ、 В 東大理

Sep 21 2013

Introduction

- ヒッグス粒子発見を発表 2012/07/04
- その性質測定が非常に重要:
 - 質量、結合定数、スピン
 - •本当に標準模型ヒッグスなのか?

(日) (同) (三) (三)

- H→WW* → IνIνの特徴
 - *γγ*, ZZ^{*} →4I と比較して質量分解能が悪い
 - 崩壊分岐比は大きく、背景事象も比較的少ないため 結合定数やスピンの測定に高感度

Analysis strategy

- 信号の特徴
 - 高横運動量のレプトンが二つ(逆電荷)
 + 横消失エネルギー(E_T)

$$\begin{cases} e\mu/\mu e \\ ee/\mu\mu \end{cases} \times \begin{cases} 0 \text{ jet} \\ 1 \text{ jet} \\ \ge 2 \text{ jet} \end{cases}$$

- $e\mu: p_T^{electron} > p_T^{muon}$
- 各チャンネルで事象選別を最適化

< ロト < 同ト < ヨト < ヨト

現在、eµ/µe (Different Flavour) + 0 jet チャンネルが 高統計で背景事象も少なく測定精度を決定している

Background estimation in Different Flavour

T.Kishimoto (Kobe)

Moriond results: ATLAS-CONF-2013-030

• 125 GeV における信号強度 ($\mu_{obs} = \sigma/\sigma_{SM}$):

 $\mu_{obs} = 1.01 \pm 0.21$ (stat.) ± 0.19 (theo.syst.) ± 0.12 (expt.syst.) ± 0.04 (lumi.)

H→WW^{*} → lvlv を用いた解析は、
 理論的誤差/系統誤差が支配的になりつつある

< ∃ > <

Present situation of systematics

• Diboson 事象に対する理論的誤差:

	${ m W}\gamma^*$	WZ	${\sf W}\gamma$	ZZ	
0 jet	16%	4%	11%	4%	
1 jet	29%	4%	53%	4%	

- W+jets 事象に対する系統誤差:
 - Fake Factor はデータから di-jets 事 象を用いて計算。
 - Di-jets 事象と W+jets 事象の jet の 組成の違いが主な系統誤差、約 40%

→ この Diboson 事象に対する理論的誤差と W+jets 事象に対する系統誤差を削減するのが本研究の目的

The idea

終状態が Same Sign(SS) のデータを用いた、
 W+jets + di-boson(ZZ/WZ/Wγ/Wγ*)の見積もり方法の開発

•
$$n_{OS}^{\text{diboson}} + n_{OS}^{\text{Wjets}} = n_{SS}^{\text{data}} + (n_{OS}^{\text{Wjets}} - n_{SS}^{\text{Wjets}})$$

= $n_{SS}^{\text{data}} + \text{fakefactor} \times (n_{OS}^{\text{WjetsC.R}} - n_{SS}^{\text{WjetsC.R}})$

The idea

- Di-boson 背景事象を"full data-driven" で見積もる事が可能
 - Normalization/shape 共にデータから 見積もられる
 - 理論的誤差が不必要

←Di-boson 事象が OS=SS であるという 仮定に基づく

- W+jets 事象も一部が SS データから見積もられる
 - Fake factor によって見積もるのは n^{Wjets} n^{Wjets}、約 40%の減少

→W+jets 背景事象に対する系統誤差も削減することが可能

The assumption

- Diboson 事象が OS=SS であるという仮定を MC を用いて確認
- イベント選別:
 - $p_T^{lead} > 22 \text{ GeV}$, $p_T^{sublead} > 10 \text{ GeV}$, $E_{T,rel}^{miss} > 25 \text{ GeV}$
- ▲φ(II): レプトン間の Δφ, M_T: 横質量, M(II): ダイレプトンの不変質量

Normalization/shape がOSとSSで一致!

New method vs curent estimation

• 0jet 信号領域 * における横質量:

• " $n_{OS}^{diboson} + n_{OS}^{Wjets}$ "を " $n_{SS}^{data} + (n_{OS}^{Wjets} - n_{SS}^{Wjets})$ "で置換 • 1787±13 → 1789±25 events. 有意な差はない

> * $p_T > 22$, 10 GeV, $m_{||} > 10$ GeV, $E_{T,rel}^{miss} > 25$ GeV, $n^{jet} = 0$, $\Delta \Phi_{||,MET} > 1.57$, $p_{T,||} > 30$ GeV, $m_{||} < 50$ GeV, $\Delta \Phi < 1.8$

Systematic uncertainties

● 信号領域における各背景事象数:事象数±(stat.)±(syst.)

	$W\gamma$	$W\gamma^*$	WZ	ZZ	Wiets	SSD ata	Total	Err.
0j Old	$53.3 \\ \pm 2.96 \pm 5.9$	$^{24.8}_{\pm 1.5\pm 4.0}$	$^{17.5}_{\pm 0.9\pm 0.7}$	$\substack{1.2\\\pm0.1\pm0.1}$	$^{165.9}_{\pm 2.5\pm 66.4}$		262.7 ±4.2±66.8	25%
0j New					$90.1 \pm 3.1 \pm 36.1$	$159.2 \pm 14.0 \pm 0.0$	$249.3 \pm 14.3 \pm 36.1$	$16\%_{down}^{36\%}$
1j Old	$18.3 \pm 1.7 \pm 9.7$	$5.3 \pm 1.2 \pm 1.5$	$^{12.6}_{\pm 0.7\pm 0.5}$	$0.9 \pm 0.1 \pm 0.0$	$47.68 \pm 1.6 \pm 19.1$		$84.7 \pm 2.7 \pm 21.5$	25%
1j New					$22.7 \pm 1.9 \pm 9.1$	$62.0 \pm 8.3 \pm 0.0$	$84.8 \pm 8.5 \pm 9.1$	15% ^{40%} down

• 0j: 263 \pm 4(stat.) \pm 67(syst.) \rightarrow 249 \pm 14(stat.) \pm 36(syst.)

• 1j: 85 \pm 3(stat.) \pm 22(syst.) \rightarrow 85 \pm 9(stat.) \pm 9(syst.)

Di-boson と W+jets に関する誤差を約 40%削減!

- H→WW→lvlv を用いた解析では系統誤差が支配的になりつつある
- SS data を用いた di-boson と W+jets 事象の見積もり方法を開発した
 - Di-bosons 事象は normarization/shape 共にデータから見積もられるため、理論的誤差が不要
 - W+jets 事象も一部 (約 40%) がデータから見積もられる
 - Di-boson と W+jets 事象に関して約 40%の系統+統計誤差の削減
 将来、高統計下ではより強力

Backup

T.Kishimoto (Kobe)

3

(日) (日) (日) (日)

Same Sign plots

э

- (A 🖓

- A 🖃

OS-SS vs Nominal MC

- "<u>SS Data + DD Wjets(OS-SS)</u>" vs "di-boson(OS) + DD Wjets(OS)" new method our current estimate
- Dots:新しい方法
- Histograms:現行の方法

· · · · · · · · ·

WW control region

- 事象選別:
 - p_T > 25, 15 GeV, m_{II} >10 GeV, $E_{T,rel}^{miss}$ > 25 GeV
 - $\Delta \Phi_{II,MET} > 1.57$, $p_{T,II} > 30$ GeV, $50 < m_{II} < 100$ GeV

• Normalization factor 0jet: 1.16±0.04, 1jet: 1.03±0.06

- ₹ 🗦 🕨

Top control region

• Top 0jet: Jet Veto Survival Probability method

$$N_{top}^{exp}(0j) = N_{all}^{Data-non-top} imes rac{N_{top,0j}^{MC}}{N_{top,all}^{MC}} imes (rac{P_1^{Btag,data}}{P_1^{Btag,MC}})^2$$

Normalization factor 0jet: 1.07±0.03, 1jet: 1.04±0.02

Z+jets control region

- 事象選別:
 - $p_T > 25$, 15 GeV, $m_{ll} > 10$ GeV, $E_{T,rel}^{miss} > 25$ GeV
 - m_{II} <80 GeV, $\Delta\Phi$ > 2.8

Normalization factor 0jet: 0.90, 1jet: 0.91

T.Kishimoto (Kobe)