

ATLAS実験RUN2に向けた レベル1ミューオントリガーへの 新しいアルゴリズムの導入

神戸大学 理学研究科 来見田 吏恵

蔵重久弥,稲丸由夫輝,長谷川誠,佐々木修 A 石野雅也 B ,田代拓也 B ,救仁郷拓人 B ,鈴木友 C ,他ATLAS日本TGCグループ B 、終研大 C

Contents

- ➤ LHC RUN2 (2015~)
- ATLASミューオントリガーシステム

(参考:物理学会2012秋季大会 京都大 田代拓也氏による報告)

➤ RUN1でのノイズバースト問題報告、その対処法・実装

Motivation for RUN2

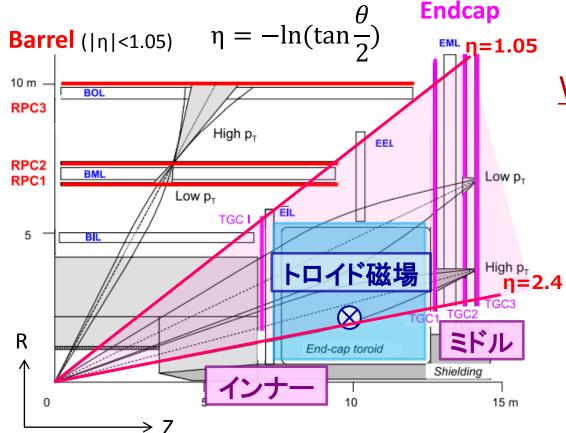
LHC parameter	RUN1 (~2012)	RUN2 (2015~)
重心系energy [TeV]	7~8	13~14
Luminosity $[cm^{-2}s^{-1}]$	0.7×10^{34}	1.5×10^{34}
バンチ間隔 [ns]	50	25

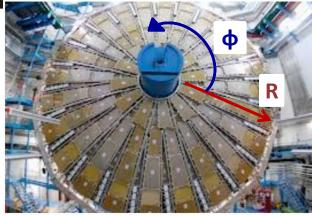
• ATLAS LVL1 muon trigger

p_T threshold	[GeV]	15	20
Trigger rate	[kHz]	6 ■	⇒ 34 (RUN1の条件)

RUN1のトリガー条件では、許容トリガーレート(25kHz)を超える可能性あり

物理解析からの要請

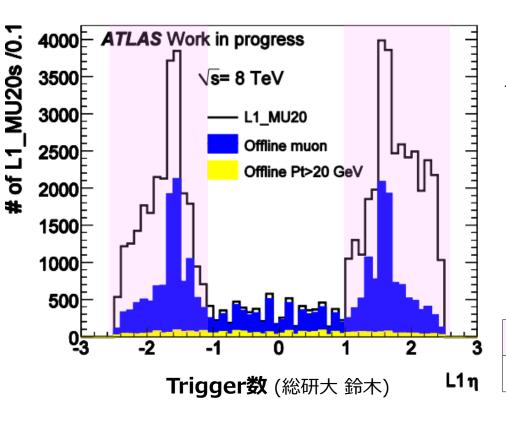

ヒッグス粒子の性質測定のために、weakボゾンの崩壊による ミューオンを捉えたい $\longrightarrow p_T$ threshold 20GeVを維持したい


 p_T thresholdは維持、トリガーレートを削減する

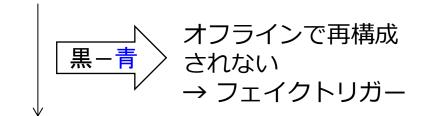
ミューオントリガー用検出器

TGC (Thin Gap Chamber) $1.05 < |\eta| < 2.4$

外側 3 層(ミドルステーション) 内側 1 層(インナーステーション)



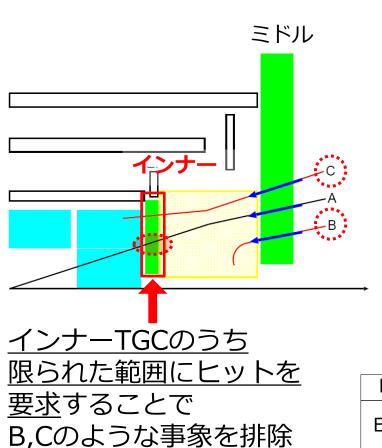
ミドルステーションTGC

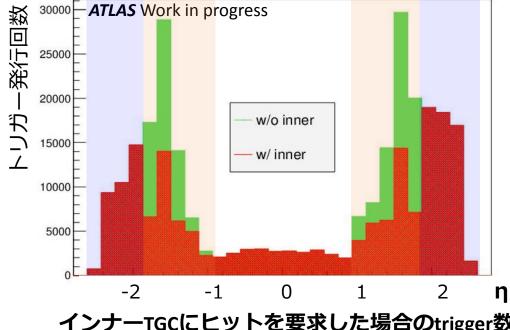

Wire(R方向),strip(φ方向) 2次元読み出し

- ミドルステーションで ミューオンの飛跡を測り、 横運動量(p_T)を算出
- 高い*p_T の*ミューオンに対し てtriggerを出力

フェイクトリガー

<u>L1_MU20</u>:レベル1で20GeV以上と 判断されたイベント


Offline muon (42/100)


Endcap領域 1.05|η|<2.4 Barrel領域 |η|<1.05

Endcap領域において、

衝突点由来のミューオンでない粒子によるトリガー (**フェイクトリガー**)が多く発行されている

フェイクトリガー削減方法

インナーTGCにヒットを要求した場合のtrigger数 (神戸大 稲丸)

Barrel	RPC η <1.05
Endcap	インナーTGCがカバー する 範囲 1.05< η <1.92
	インナーTGCがカバー しない 範囲 1.92< n <2.4

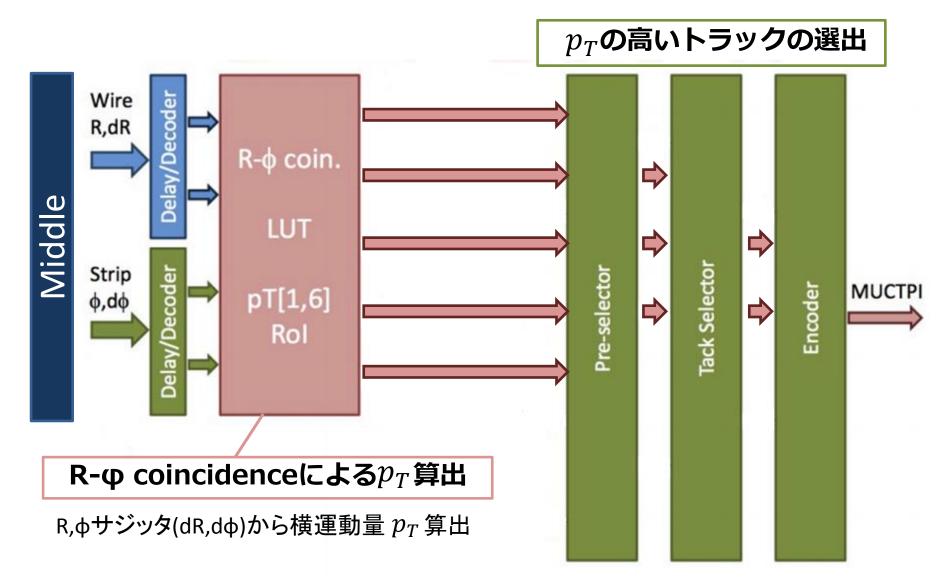
インナーステーションTGCにヒットを要求することで約30%のトリガーレート削減が可能

フェイクトリガーの起源となる粒子はミドルの直前に位置するトロイド磁石付近や ビームパイプを囲むシールド付近で発生した遅い陽子であるという理解をしている.

実装方法

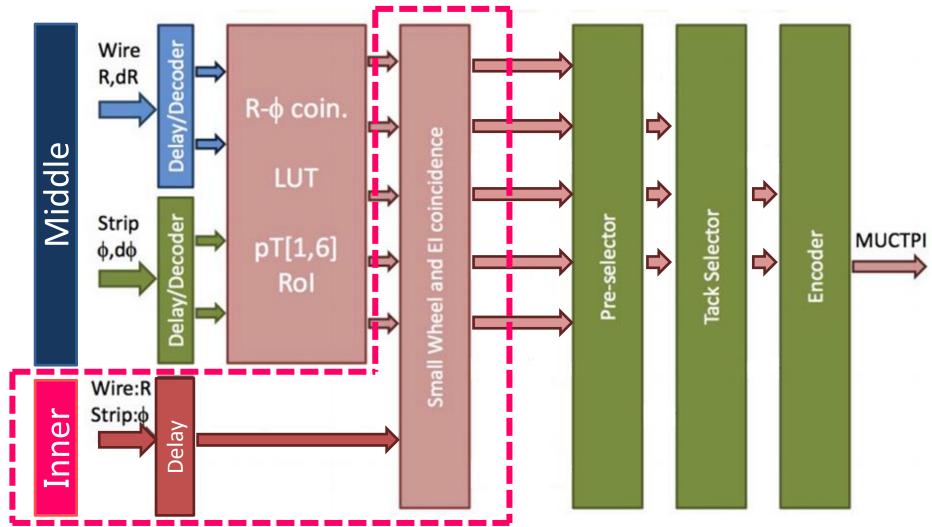
- SL (Sector Logic)
- TGCのtrigger出力を最終的に決定
- →インナーステーションTGCとの coincidenceを取る回路をRUN2で追加

Sector Logic Board

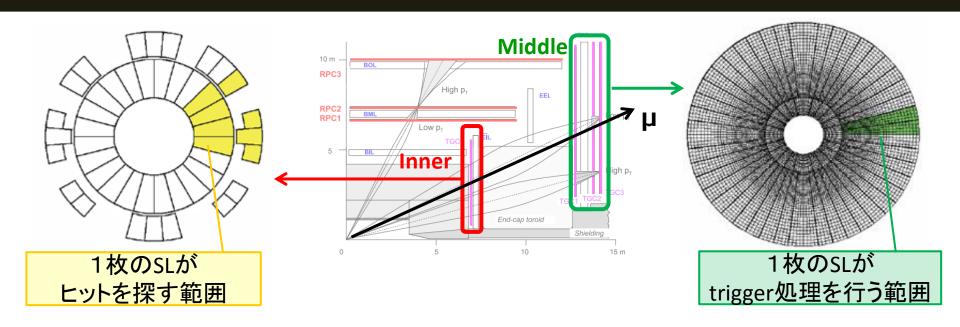

firmware & upgrade.

利点: hardwareはそのままでtrigger Logic変更可能

参考


処理範囲	TGC(片側)24分の1 /board
Main FPGA	Virtex- II XC2V3000-BG728 (2chip/board)
入力	G-link×16 (ミドル101bit×2, インナー64bit) 各ケーブルでの伝送速度 640 or 680 Mbps

Block Diagram for RUN1



Block Diagram for Inner Coincidence

インナーステーションTGCとのcoincidence回路追加

Inner Coincidence Map

- インナーTGCにhitを要求するのかどうか
- インナーTGCのどこにhitを要求するのか

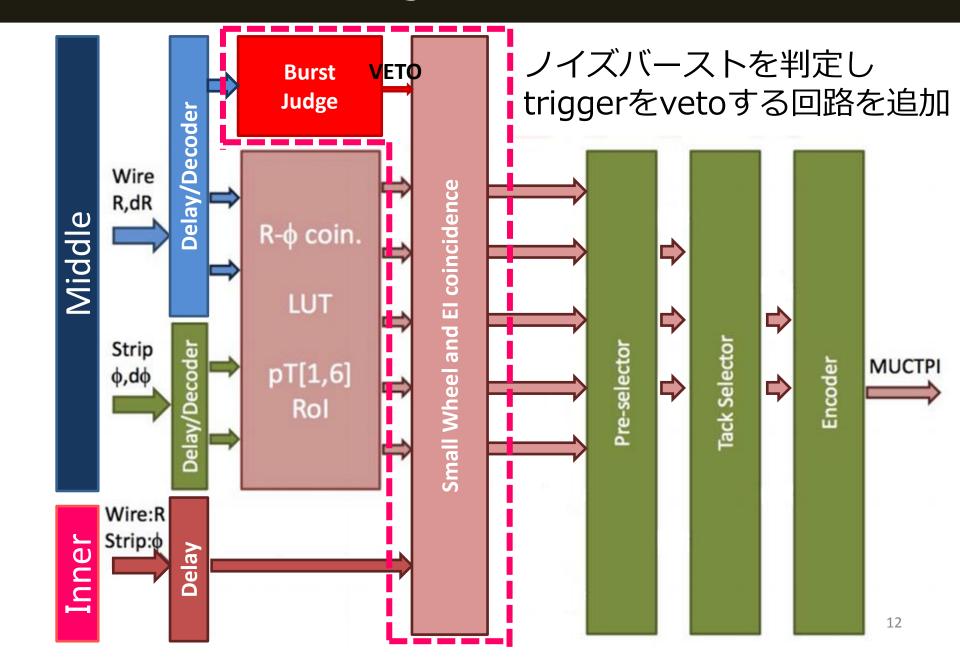
これらを最適化したInner Coincidence Mapを用いて coincidence処理を行う.

ヒット位置によって異なるMapが必要 ⇒ Block RAMに実装

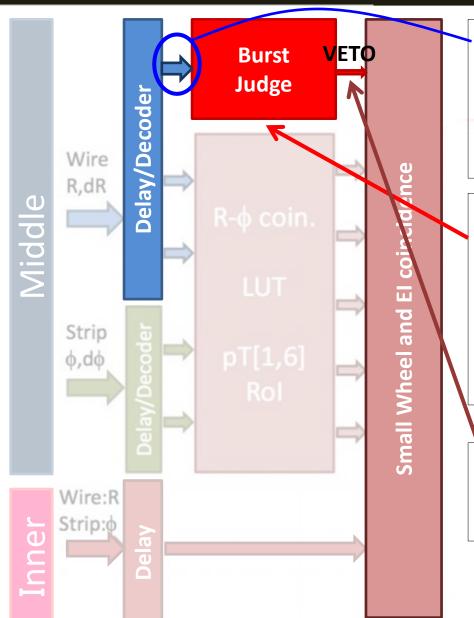
トリガー効率を維持したままトリガーレートを落とす

Noise Burst

RUN1において電気的なノイズが原因と思われるeventが見られた.


このようなeventが 連続して発生し、triggerを発行.

その結果、 データ読み出しバッファの overflowによる障害が生じた.


データ損失を防ぐためには、バッファのoverflowが起こる前に ノイズバーストの兆候を検知する必要がある。

連続したヒット信号を検知しtriggerをvetoする回路を実装 RUN2でSector Logic firmwareに追加.

Block Diagram for New SL

Scheme for Trigger Veto

R-φ coincidenceを取る前の Wire信号を使用.

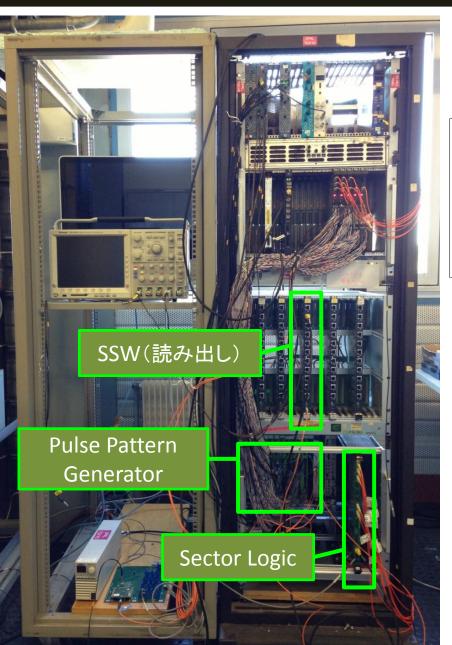
- 早期にburstの兆候を捉える
- SLの消費clock数を増やさない

連続したMバンチ中に N回以上trackを検知すると VETO信号を出力.

 $M \sim 8$, $N \sim 3$

M,N: Control Registerで指定

VETO信号を受けて triggerを落とす.


動作試験①simulation

Simulator: Xilinx社 ISE Simulator

- ✓ Verilog-HDLによるdesign
- ✓ 各機能を個別にsimulation

動作試験②testbench

新しいfirmwareを実装した SLボードで動作確認を行った.

- ✓ ミドルからの入力101bit, インナーからの入力64bitを再現
- ✓ SLの出力200bitをSSW経由で 読み出し入力信号との整合性を検証

主な機能をチェック

- R-φ Coincidence
- Inner Coincidence
- Burst judge
- Trigger veto

その他SL全体としての動作確認が完了.

SLが設計通りに 動作していることを確認

Summary

■ ATLAS実験RUN2に向け、レベル1ミューオントリガーの 処理を行うSector Logic firmwareの開発を行った

- ✓ インナーステーションTGCを用いたcoincidence回路の実装
 - Inner Coincidence Mapを用いてtrigger判定を行う回路の導入により約30%のトリガーレート削減が可能.
 - トリガー効率を維持、フェイクトリガーのみを落とす.
- ✓ ノイズバーストの兆候を検知し、TGCのtriggerをvetoする 回路の実装
 - 読み出し回路のoverflowを予防し、データ損失を防ぐことが可能.
 - レイテンシーは維持したまま新しい回路を実装.

今後

- testbenchで実際のInner Coincidence Mapを用いたテストを実施.
- 実機を用いた動作テストを行い、実用化に向けた調整.