

- Title
 - Introduction
 - Muon Trigger
 - Tag&Probe method
 - High pT efficiency
 - Low pT efficiency
 - Total Result
 - Summary

東工大,高工研A,神戸大理^B 小林大,石塚正基,管野貴之,北村拓己^B,久世正弘, 徳宿克夫^A,長野邦浩^A,野辺拓也,樋口浩太, 松下崇^B,山崎祐司^B,他ATLAS日本トリガーグループ Mar.26 2013 68th JPS annual meeting

ATLAS実験における ミューオントリガーの広範囲の 横運動量にわたる効率評価

Introduction

- ◎ LHC・ATLAS実験で使用されている、ミューオン トリガーシステムについて、4GeVから40GeVの広い 横方向運動量(pT)領域に対して、実データ(2012, ~5fb⁻¹) を用いた効率測定を行った。
- ・現在の運転でこれを行うためには、低いpr領域の効率測定に 対して様々な工夫を導入する必要があった。
- •本発表の流れ

1.LHCとATLAS実験について
 2.ミューオントリガーシステム
 3.トリガー効率の測定方法Tag&Probe
 4.High prのミューオンに対する効率測定
 5.Low prのミューオンに対する効率測定
 6.まとめ

2

- Introduction

- Muon Trigger

- Total Result

- Summary

- Tag&Probe method

- High pT efficiency

- Low pT efficiency

LHC and ATLAS

• LHC(Large Hadron Collider)

- •スイス・フランスにまたがる 大型円形加速器
- 陽子陽子衝突型
- •リング周長 : 26.7 km
- ・重心系エネルギー:8TeV(2012)

ATLAS(A Toroidal LHC ApparatuS) Muon Detectors

- ・Higgs粒子、SUSY粒子等の新物理の 探索を主な目的とする汎用検出器。
- •大まかな構成:
 - · 内部飛跡検出器
 - ・カロリメータ
 - ・ミューオン検出器
- ・膨大な実験データを生成 →<u>トリガーを用いての事象選別が必要</u>

- Introduction
- Muon Trigger
- Tag&Probe method
- High pT efficiency
- Low pT efficiency
- Total Result
- Summary

 ◆ Trigger System ● ミューオントリガーシステムには3つの段階があり、 オフライン再構成されたミューオンのうち、全段階を 通過したイベントの割合として、効率を求める 			
$eff = \frac{\text{Trigger passed muon}}{\text{Offline reconstructed muon}}$			
Level 1	Level 2		Event filter
L1 (RPC,TGC) Hardware level選別 興味のある領域 (RoI)を指定	L2muonSA (MDT) Software level選別 RoIで指定された領 域のMDTからprを 計算し、選別 (SA:StandAlone)	L2muonCB (MDT+ID) Software level選別 内部検出器も利用 して詳細に選別 (CB:ComBined)	EF Software level選別 処理速度の制限が 厳しくない。 ほぼofflineと同等に 詳細な選別。

• p_T: 4GeV閾値のトリガー(EF(4GeV))の効率を、測定する

- Tag&Probe
- トリガーで取られたミューオンをそのまま見てしまうと、
 効率は100%になってしまう
 - → <u>粒子の崩壊によるミューオン対を利用する(Tag&Probe法)</u>
 - •イベントが単一ミューオントリガーで取得されたことを要求
 - ・ミューオン対の片方:単一ミューオントリガーの通過を要求
 →もう一方のミューオン:
 トリガー通過の必要がなく、効率測定が可能
- <u>Zは10GeV以上、J/ψは10GeV以下のp</u>T領域についてそれぞれ用いる

6

- Tag&Probe method

High pT efficiencyLow pT efficiency

- Total Result

- J/ψを用いたTag&Probeについては、
 Zの場合よりも困難である
- Low pTの単一ミューオンのトリガーは強くプリスケールせざるを得ない
 → EF(4GeV)などをtagとして要求すると、統計が非常に少なくなってしまう
- ●このため、様々な工夫が必要
- Tagに要求するトリガーをEF(18GeV)とし、boostしたJ/ψからの信号を利用
- BoostしたJ/ψを効率よく、かつ効率測定を正しく 行えるトリガーを新たに導入した
- 2つのミューオンの飛跡は非常に近く、Tagとprobeの
 判別が困難な場合がある
 - →ミューオン検出器層(MS)での位置判別を行っている

IDでは同じくらい離れている

- Low pT efficiency

- Total Result

- J/ψ由来のミューオンを利用することで、
 低いpт(0~10GeV)のミューオンに対する効率を求めた
 - Tag : EF(18GeV)を要求

- BarrelとEndcapの領域に 分割して示す
- ・低いp_Tでは数GeVのp_Tのミューオン
 まで十分に統計があるため、turn onがしっかり見える

- Low pT efficiency

- Total Result

- Z, J/ψの結果を重ねて、0 40[GeV]のp⊤に対しての 効率測定結果として示す
 - 2つの手法の効率がきれいに連続になり、矛盾なく効率測定が できていることがわかる

- Total Result

Summary & Future work

● まとめ

- ATLAS実験に於いては、データ量が膨大であるために、 必要なデータを効率よく選別し、記録する必要がある
- ミューオントリガーシステムについての効率評価を行うために、 Tag&Probeという方法を用いた
- •Z, J/ψ由来のミューオンを利用することによって、High p_TとLow p_Tの ミューオンに対する効率をそれぞれ求めることができた

12

- Summary

2つの手法の結果を統合することで、広い横運動量領域に対する
 トリガー効率を計算することができた

● 今後

- トリガーの各段階での効率の測定も今後詳細に行っていく
- •MCとの比較により、それぞれの手法のクロスチェックを行い、系統誤差を 見積もる