LHC-ATLAS実験におけるソフトレプトンを用いた スカラートップ粒子の探索

野辺拓也,浅井祥仁^A,金谷奈央子^B, 久世正弘,佐々木雄一^A,山中隆志^B

東工大理,東大理^A,東大素セ^B

2013/3/29 日本物理学会第68回年次大会

広島大学

Motivation

- ~125GeVに発見されたHiggs粒子質量の"自然さ"からの要請により、スカラー トップ粒子(stop)の質量は軽くなる (<500GeV)
- (軽いstopがあるとしたら)なぜ見つからないのか?
 実験的に観測が難しいシチュエーションにある可能性を考える
- スカラートップの対生成において、

の崩壊を考える。デュとデュの質量固有状態がほぼ縮退している場合、崩壊物が ソフト(低運動量)になり感度を失う

- LSP(最も軽いSUSY粒子)がHiggsino-likeな場合、 χ[±]1と χ⁰1の 質量 固有状態は 縮退
- ATLAS検出器で2012年取得された√s = 8 TeV 20.5fb⁻¹のデータを用いる
 現在バックグラウンドの理解が進行中、今回は解析の経過を報告する

Strategy

- シグナルの特徴: $\tilde{t} \to b + \tilde{\chi}_1^{\pm} \to b + \tilde{\chi}_1^0 + (W^* \to l\nu)$ (+c.c.) 高い横エネルギー欠損(mET)、2つのbjet、ソフトレプトン
- ソフトレプトンの定義: 横運動量が 6(10) < p_T < 25 GeVのミューオン(電子)
- 1. **2b解析**: 高いp_T(>60 GeV)のbjetを2本+ソフトレプトンを要求、他のhadronic activityをveto
- ISR解析: ソフトレプトン+Initial State Radiation (ISR) のhigh pTジェットを 要求し、反対側にブーストされたstopペアを見ることでソフトなbjetを拾う => 2本ではなく、少なくとも1本のbjetを要求

Fakeレプトンバックグラウンド
 の見積もり: データを用いる(詳細はbackup)

- その他のバックグラウンドはMCベースで見積もる。
- バックグラウンドを理解するまでは信号領域はブラインドする

Current limits & event topology

- $\Delta m = (m_{\chi_1^{\pm}} m_{\chi_1^{0}})$ が5 GeV, 20 GeVをベンチマークポイントとする
- ATLAS実験によるレプトンを要求しないstop信号の解析結果 (13fb⁻¹ 2012年)
- ソフトレプトンを要求する事で感度向上を目指す

	2bjet type			ISR type	
	SR 2B LOW	SR 2B HIGH		SR ISR LOW	SR ISR HIGH
			p⊤ μ(e)	6(10)<р _{т,lep} <25 GeV	
рт μ(е)	(e) 6(10) <p<sub>T,lep<25 GeV</p<sub>		mET	>250 GeV	> 300 GeV
mET	>200 GeV	> 300 GeV	dR_{min}	>1.0	
iets	leading 2jets with pT>60 GeV,		N _{jets}	>=3	
jets	3rd jet veto with p _T >50GeV		leading jet	>180 GeV (not b-tagged)	
$h_T = \Sigma_{PT,jet}$ (leading two jet除<)	<50GeV	no cut	sub jets	>40GeV	>25GeV
m _{CT}	>150 GeV	>200 GeV	bjet	at lea	st one
Δ.co				>100GeV	
ム Ψmin :ジェットとmETの最小Δφ	>0.4		mET/m _{eff}	>0.32	
			*	$m_{\rm eff} = mET + p$	$p_{\mathrm{T,lep}} + \sum p_{\mathrm{T,jet}}$

- mETトリガーを使用
- 最終的に信号とバックグラウンドを分離する変数:
 - ◆ 2bjet type: m_{CT} (co-transverse mass) $m_{CT}^2 (bjet1, bjet2) = [E_{T,bjet1} + E_{T,bjet2}]^2 - [\overrightarrow{p_{T,bjet1}} - \overrightarrow{p_{T,bjet2}}]^2$

topとstopの質量の違いを用いる

◆ ISR type: mET

Fakeレプトンの抑制

- Fakeレプトン(non-prompt leptonやhadron track等がleptonとして誤認されたもの)は isolationカットを外し、Fakeイベントをenhanceしたコントロール領域で見積もる
- ISR解析では高い横質量 $m_{T} = \sqrt{(p_{T,lep} + mET)^{2} (\vec{p}_{T,lep} + mET)^{2}} > 100 \text{GeV} \delta$ 要求するが、下記のような場合にFakeが残ってしまう
- 高いmET & 高いm_Tの信号領域に残るfakeレプトンバックグラウンド

バックグラウンドの見積もり

- Top、W+jetsのそれぞれをenhanceしてコントロール領域(CR)を定義
- Profile likelihood methodを用いてCRを同時フィット (CRでのMC事象数をデータに合わせる)
- フィット結果を信号領域(SR)に外挿してバックグラウンドを見積もる

コントロール領域におけるData / MC比較 (2bjet)

- コントロール領域(CR)はレプトンpTの要求を反転 (pT>25 GeV)
 それ以外は基本的に信号領域と同じkinematics領域を見る
- Top: b-tag, W: b-vetoで統計、purityを保つようにCRを設定

コントロール領域におけるData / MC 比較 (ISR+bjet)

コントロール領域(CR)はHard lepton領域で定義。(pT>25 GeV)
 それ以外は基本的に信号領域と同じkinematics領域を見る

バックグラウンド見積もりの結果

- 主な系統誤差:
- CR→SR外挿の際の誤差 10-40%
- ジェットエネルギースケール~5%
- ISR解析ではコントロール領域の分布がreasonableであったので 150<mET<300 GeV で定義した確認領域 (VR) にフィット結果を外挿し、妥当性を確認した (1o)

まとめ

• スカラートップ粒子の対生成を

崩壊モードを用いて探索(Higgsino-LSP)

- ATLAS検出器で2012年に取得された8 TeV 20.5fb⁻¹のデータを使用
- ソフトレプトンを用いた解析によってバックグラウンドを 抑え、低いstop質量領域での感度向上を目指す
- Fakeレプトンバックグラウンドを抑え、事象選別の最適化を行った
- バックグラウンドの理解が進行中
- 全てのバックグラウンドの理解が終了次第、信号領域を開ける予定
- 夏のpublicationを目指している

backup

Fakeの見積もり(Matrix Method)

• Fakeレプトンは以下の関係から見積もる

$$N_{\text{fake}}^{\text{tight}} = \epsilon_{\text{fake}} \frac{\epsilon_{\text{real}} N_{\text{fail}} - (1 - \epsilon_{\text{real}}) N_{\text{tight}}}{\epsilon_{\text{real}} - \epsilon_{\text{fake}}}$$

- Nfail: ベースライン条件は満たすがisolationを満たさないレプトンの数
- Ntight: isolation条件を満たすレプトンの数
- Isolation: $\sum_{\Delta R < 0.3} p_{T}^{trk} / p_{T}^{lepton} < 0.16(0.12)$ for 電子(ミューオン) (トラックはp_T>400 MeV)
- ε_{real} (real efficiency): Z→l⁺l⁻サンプルを用い、ベースラインレプトンに対してisolationカットの効率を測定
- (pT, η)で区切った各phase spaceでパラメータを見積もっておき、pure data-drivenでFakeバックグラウンドを見積もる

Г		<u> </u>		
		SRIL2B		
		SRIL2Ba (for lower stop mass)	SRIL2Bc (for lower stop mass)	$ \begin{array}{c} \bigcirc & 10^{\circ} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$
	ρ⊤ μ(e)	6(10) <p<sub>T,lep<25 GeV</p<sub>		a 10 ⁴ Single Top
	MET	>200 GeV	> 300 GeV	10 ³ DY Dibosons ATLAS work in progress
	jets	leading 2jets w 3rd jet veto w	rith p⊤>60 GeV, rith p⊤<50GeV	
	h⊤	<50GeV	no cut	
	m _{CT}	>150 GeV	>200 GeV	10^{-2}
	$\Delta \phi_{min}$	>().4	

• Co-transverse mass m_{CT}:

 $m_{CT}^{2}(bjet1, bjet2) = [E_{T, bjet1} + E_{T, bjet2}]^{2} - [\overrightarrow{p_{T, bjet1}} - \overrightarrow{p_{T, bjet2}}]^{2}$ $(E_{T} = \sqrt{p_{T} + m})$ は崩壊生成粒子がback-to-backの場合最大

- ff系からの2本のbjetで組むとtopの質量からWを差っ引いた分 (~135GeV)が上限
- 高いm_{CT}要求で主要なバックグラウンドはW+bb
 Semi-leptonic tī+charmでcをmis-bTagする場合がsubdominant

m_{cT} [GeV]

事象選別 (ISR+bjet)

	SRILIB		$\int \frac{60}{10^5} = \frac{10^6}{10^5} = \frac{10^5}{10^5} = \frac{10^5}{10^5$
	SRILIBa (for lower stop mass)	SRILIBC (for lower stop mass)	$\int_{a} \int_{a} \int_{b} \int_{a} \int_{a} \int_{b} \int_{a} \int_{a$
рт μ(е)	6(10) <p<sub>T,lep<25 GeV</p<sub>		$10^{3} = 10^{3} = 0^{3}$
MET	>250 GeV	> 300 GeV	
Njets	>=3		
leading jet	>180 GeV (not b-tagged)		
sub jets	>40GeV	>25GeV	
bjet	at least one		10 ⁻²
mT	>100GeV		$\begin{bmatrix} 10^{-3} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ $
mET/Meff	>0.32		E ^{miss} /r

- High m_Tとjet multiplicityの要求からW+jetsバックグラウンドはほぼ抑制
- 主なバックグラウンドはft
- Effective mass:

 $m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + p_{\text{T,lep}} + \sum p_{\text{T,jet}}$ の中に含まれるmETの割合が大きい事を要求 (ターゲットとする Δ Mの小さい領域ではbjetはソフトになり、mETの割合が上がる)