LHC-ATLAS実験におけるZH→vvbb過程を 用いたヒッグス粒子の探索

JPS 2013, Hiroshima Univ., Japan

<u>永井義一</u>,木内健司^A,音野瑛俊^B CPPM Aix-Marseille Univ., 筑波大^A,大阪大^B

Talk Outline

Introduction
Analysis

- Event selection
- Analysis Strategy
- Signal & background yield

and M_{bb} distribution

Result

H→bb search result

Summary and Prospects

0

electron-

0

bottom quark

0

Introduction

Last summer, new Higgs-like boson observation was announced by both ATLAS & CMS around 125 GeV & recently both group update result with full dataset of 2011 & 2012

Introduction

What is the next step?

Confirm nature of new boson. SM Higgs boson? Or something else? Property measurement (mass, spin/CP, coupling)

is ongoing mainly using bosonic decay mode

 $(H \rightarrow \gamma \gamma, ZZ, WW)$

If the new boson is the SM Higgs boson,

it predominately decays to the b quark pair

ggH: highest cross-section, but suffer from QCD multijet

background (BG)

VBF: 2nd highest at m_H = 125 GeV, but QCD is issue as well

VH: Higgs association production with vector boson process, possible to suppress QCD BG by requiring its leptonic decay and boosted Higgs production

\rightarrow Focus on ZH process with Z \rightarrow vv decay

JPS2013, March 29

$ZH \rightarrow vvbb$ Analyses

Event Selection

Event trigger: Missing E_T (MET) trigger with MET > 80 GeV Baseline selection:

- Large MET (MET > 120 GeV) ← Take largely boosted Z and Higgs boson
- 0 lepton (no electrons, no muons)
- 2 or 3 High p_T jets with $p_T^1 > 45$ GeV, $p_T^{2,3} > 20$ GeV, $|\eta| < 2.5$
- Exactly 2 b-tagged jets

(b-jet identification with 70% efficiency, 0.7% fake rate)

QCD multijets rejection:

Missing transverse momentum (MPT > 30 GeV)

(Calculated using reconstructed track information at inner detector)

- Δφ(MET, MPT) < π/2
- Min [∆φ(MET, jet)] > 1.5
- ∆**φ(MET, bb) > 2.8**

Signal: MET from Z→vv decay → MET and MPT have close direction → MET and jets tends to go opposite direction

QCD multijets: MET from jet energy mis-measurement → MET and MPT are close or opposite direction → MET and one jet tend to go close direction

QCD multijets rejection:

Missing transverse momentum (MPT > 30 GeV)

(Calculated using reconstructed track information at inner detector)

- Δφ(MET, MPT) < π/2
- Min [∆φ(MET, jet)] > 1.5
- Δφ(MET, bb) > 2.8

Signal: MET from Z→vv decay → MET and MPT have close direction → MET and jets tends to go opposite direction

QCD multijets: MET from jet energy mis-measurement
 → MET and MPT are close or opposite direction
 → MET and one jet tend to go close direction

Event Selection

Event trigger: Missing E_T (MET) trigger with MET > 80 GeV Baseline selection:

- Large MET (MET > 120 GeV) ← Take largely boosted Z and Higgs boson
- 0 lepton (no electrons/muons exist)
- 2 or 3 High p_T jets with $p_T^1 > 45$ GeV, $p_T^{2,3} > 20$ GeV, $|\eta| < 2.5$
- Exactly 2 b-tagged jets
 - (b-jet identification with 70% efficiency, 0.7% fake rate)

QCD multijets rejection:

Missing transverse momentum (MPT > 30 GeV)

(Calculated using reconstructed track information at inner detector)

- Δφ(MET, MPT) < π/2
- Min [∆¢(MET, jet)] > 1.5
- ∆**φ(MET, bb) > 2.8** —

To extract signal topology, Z boson and Higgs boson direction is back-to-back

Analysis Strategy

Signal region categorization

- Sub-divide to 3 p_T(Z) and 2/3 jet bin signal regions to improve sensitivity

\rightarrow 6 signal regions for ZH \rightarrow vvbb in total

- Cut value on di-jet separation (dR(b,b)) is optimized for each signal region

0-lepton channel						
$E_{\rm T}^{\rm miss}$ (GeV)	120-160	160-200	>200			
$\Delta R(b, \bar{b})$	0.7-1.9	0.7-1.7	<1.5			

Background estimation

- W+jets (b, c, light-flavor), Z+jets (b, c, light-flavor), top production
 - \rightarrow These are dominant background for ZH \rightarrow vvbb analysis
 - → Estimate scale factor from theory prediction by simultaneous fit with control region (next slide)
 - → Perform fit with 1-lepton (WH→Ivbb) and 2-lepton (ZH→Ilbb)
- Di-boson (WW, WZ, ZZ) production
 - → small contribution, estimated from theoretical estimation

Control region distribution (M_{bb})

Background & Signal yields and M_{bb} distribution

Events/20 GeV

	0-le	pton, 2 je	et	0-lepton, 3 jet			
Bin	$E_{\rm T}^{\rm miss}$ [GeV]						
	120-160	160-200	>200	120-160	160-200	>200	
ZH	2.9	2.1	2.6	0.8	0.8	1.1	
WH	0.8	0.4	0.4	0.2	0.2	0.2	
Тор	89	25	8	92	25	10	
W + c,light	30	10	5	9	3	2	
W + b	35	13	13	8	3	2	
Z + c,light	35	14	14	8	5	8	
Z + b	144	51	43	41	22	16	
Diboson	23	11	10	4	4	3	
Multijet	3	1	1	1	1	0	
Total Bkg.	361	127	98	164	63	42	
	± 29	± 11	± 12	± 13	± 8	± 5	
Data	342	131	90	175	65	32	
<u> </u>							
S/N	0.01	0.02	0.03	0.01	0.02	0.03	
S/sqrt(N) 0.19	0.22	0.30	0.08	0.13	0.20	

0-lepton, 2-jets, 160 < MET < 200 GeV

JPS2013, March 29

Obs. (Exp.) limit @125 GeV: 1.8 (1.9) x σ (SM) μ = -0.4 ±0.7(stat.)±0.8(syst.)

(ZH→vvbb, WH→lvbb, ZH→llbb combined result)

JPS2013, March 29

Summary & future

We have performed searches for the low mass SM Higgs boson with $H \rightarrow$ bb process at ATLAS using 2011 + half of 2012 data

We have achieved 1.8 x σ (SM) @ 125 GeV/c² with combining 3 $VH \rightarrow Vbb$ channels

Current analysis has yet to use full 2012 dataset, we can expect further search sensitivity improvement

We are currently working to achieve further analysis improvement
 Analysis optimization (cut, new signal category, etc)

- Cut base analysis \rightarrow MVA analysis

Stay tuned!!

Figure 19: Display of a Higgs boson candidate event with zero selected leptons. The event contains two identified *b*-jets with transverse momenta of 193 GeV and 78 GeV, respectively, with an invariant mass of 123 GeV. The missing energy in the transverse plane is 271 GeV.

Backup

JPS2013, March 29

LHC and ATLAS

 proton-proton collisions at 7 TeV (2011) and 8 TeV (2012)

- The peak instantaneous luminosity at 8 TeV is 7.7 x 10³³ cm⁻² s⁻¹
- ATLAS is one of general purpose detectors built on the LHC

Integrated Luminosity

• ATLAS recorded > 5.0 fb⁻¹ (2011)

and > 23 fb⁻¹ (2012)

ATLAS detector

b-tagging Algorithm

• ATLAS: multivariate b-ID (MV1)

Use 70% efficiency (0.7% fake rate)

JET/MET performance

Background Normalization

Table 7: Rescaling factors obtained from the fit to the data for the V + b and top backgrounds. The error includes statistical and systematic uncertainties.

Table 3: Rescaling factors obtained from a fit to the data for the V+ light and c-jet backgrounds. The error includes statistical and systematic uncertainties. The numbers for Z + c are not expected to match between years; see text for details.

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Z + c	1.99 ± 0.51	0.71 ± 0.23
Z+ light	0.91 ± 0.12	0.98 ± 0.11
W + c	1.04 ± 0.23	1.04 ± 0.24
W+ light	1.03 ± 0.08	1.01 ± 0.14

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Тор	1.10 ± 0.14	1.29 ± 0.16
Z + b	1.22 ± 0.20	1.11 ± 0.15
W + b	1.19 ± 0.23	0.79 ± 0.20

	0-le	pton, 2 je	et	0-lepton, 3 jet				
Bin	$E_{\rm T}^{\rm miss}$ [GeV]							
	120-160	160-200	>200	120-160	160-200	>200		
ZH	2.9	2.1	2.6	0.8	0.8	1.1		
WH	0.8	0.4	0.4	0.2	0.2	0.2		
Тор	89	25	8	92	25	10		
W + c,light	30	10	5	9	3	2		
W + b	35	13	13	8	3	2		
Z + c,light	35	14	14	8	5	8		
Z + b	144	51	43	41	22	16		
Diboson	23	11	10	4	4	3		
Multijet	3	1	1	1	1	0		
Total Bkg.	361	127	98	164	63	42		
	± 29	± 11	± 12	± 13	± 8	± 5		
Data	342	131	90	175	65	32		

Di-boson peak

Swy .

Backgrounds are subtracted except diboson & Higgs signals Good cross-check of Higgs search method using well-known SM diboson (VZ→Vbb) process

Clearly diboson peak is visible, good agreement with SM prediction Combine with 1-lepton/2-leptons channel, $\mu_D = 1.09 \pm 0.20(stat.) \pm 0.22(syst.)$ Significance 4.0 σ

Final M_{bb} distributions

JPS2013, March 29

Systematic uncertainties

Background

Signal

0 lepton ZH WH

8.9

19

0.0 3.3

5.3

3.5

1.6

4.9

3.6

24

9.0

25

0.0

3.3

8.1

3.5

0.4 18

3.6

34

Uncertainty [%]	0 lepton	Uncertainty [%]
b-tagging	6.5	
c-tagging	7.3	<i>b</i> -tagging
light tagging	2.1	Jet/Pile-up/ E_{T}^{miss}
Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	20	Lepton
Lepton	0.0	$H \rightarrow bb BR$
Top modelling	2.7	$VH p_T$ -dependence
W modelling	1.8	VH theory PDF
Z modelling	2.8	VH theory scale
Diboson	0.8	Statistical
Multijet	0.6	Luminosity
Luminosity	3.6	Total
Statistical	8.3	
Total	25	

Main experimental systematics

- b-tagging
- Jet/MET
- MC statistics

Final result (only with full 7 TeV data)

	2-lepton		1-lepton		0-lepton			
mass	$ZH \to \ell^+ \ell^- b\bar{b}$		$WH \to \ell \nu b\bar{b}$		$ZH \rightarrow v \bar{v} b \bar{b}$		Combined	
[GeV]	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
110	7.5	5.5	3.8	4.4	4.0	4.5	2.7	2.6
115	7.8	5.8	5.5	5.6	4.8	5.1	3.9	3.0
120	10.1	7.4	4.9	5.9	5.4	5.1	3.1	3.2
125	10.4	8.2	8.0	7.5	5.9	5.6	3.5	3.8
130	13.1	10.6	8.5	9.1	12.2	8.9	5.3	5.1

ATLAS-CONF-2012-15

95% C.L. upper limit on σ (VH) x BR(H \rightarrow bb) normalized to SM expectation