LHC-ATLAS実験における高い質量を 持つミューオン対生成事象の探索

所属:東大理、高工研^A 道前 武、徳宿克夫^A、長野邦浩^A

> 第68回 日本物理学会 年次大会 広島大学 2013年3月28日

Introduction

2011年にLHCで取得された陽子衝突のデータを使用してミューオン対に崩壊する新粒子の探索を行う

ミューオン対生成事象

ミューオン対に崩壊する新粒子の中には Randall-Sundrum gravitonやTechni-mesonなどがある

Z'SSM (Sequential Standard Model) 本研究のベンチマークとして使用 CouplingはZと同じだが質量が重い limit→1.071TeV(Tevatron)

2011年の√*s*=7TeVでのデータ(積算ルミノシティ5fb⁻¹)を用いた解析 →ATLAS published (*Search for high-mass resonances decaying to dilepton final states in pp collisions at √s* = 7TeV with the ATLAS detector, JHEP11(2012)138) →今回は自分の解析結果での発表となります

ATLAS検出器で測定された高いp_Tを持ったミューオン対生成事象

本研究では不変質量M_{µµ}が7oGeV以上のミューオン対を1つ以上含むイベントを 使用して解析を進める

<u>イベントとミューオンの選別</u>

- ミューオンが2つ以上あるイベント
- ミューオンのp_Tが25GeV以上
- ミューオンの周りに他の粒子がない(isolated) →ミューオンの周り(dR $\equiv \sqrt{\eta^2 + \varphi^2}$ <o.3)の粒子のp_Tの合計がミューオンのp_Tの5%以下
- 2つのミューオンが逆電荷を持つ
- 2つのミューオンから組んだ不変質量が70GeV以上
 ※ミューオン対の候補が2組以上ある場合はp_Tの合計が高い組を選択

<u>信号とバックグラウンドのシミュレーション</u>

新粒子が存在した場合、右の図のような シグナルが見えると予測している (シグナルはZ'のシミュレーションサン プルを使ったもの)

<u>バックグラウンド</u> 主なものはDrell-Yan生成(Z/ $\gamma^* \rightarrow \mu\mu$)、続 いてDi-boson、 $t\bar{t}$ 、W+jet、QCD+multijet($b\bar{b}, c\bar{c}$)

<u>ミューオンのη、p_T分布</u>

DataとMCは一致している

不変質量の分布

<u>Normalize</u>

- それぞれのMCをまず生成断面積で normalizeする
- 2. Zのピーク(70-110GeV)でのエント リー数をdataとすべてのMCを足し合 わせたものでそれぞれ積分する
- 3. 積分した結果からN_{Data}/N_{MC}を求め、 MCの全体の分布をscaleする

DataとMCは良く一致している このデータ量では信号は見えていない

DataとMCは一致している

系統誤差

2TeVで期待される観測量に対する系統誤差

@2TeV	Signal	Background
PDF	-	20%
Electroweak	-	4.5%
Efficiency	6%	6%
Resolution	3%	negligible
Momentum scale	0.1%	0.1%
σ of Z/γ*	5%	-

128GeV Events Data 2011 10⁶ ATLAS work in progress Z/γ* 10⁵ $L dt = 5.0 fb^{-1}$ Diboson 10⁴ tī √s = 7TeV W+Jets 10³ QCD 10² 10 1 11111 10-10-2 10² 10^{3} $M_{\mu\mu}$ [GeV]

9

<u>Signal scan</u>

シグナルの有無をp値を使って評価する(M_{µµ}>130GeV)

Log Likelihood Ratio(LLR) = $-2 \ln \frac{L(S(\sigma_{Z'}, M_{Z'}) + B)}{L(B)}$

- 1. DataとMCからlog-likelihoodがbest fit の時のLLRを 決定 (右下図の〇の位置)
- 2. Pseudo-Experiments(PE)を500回試し、同じように best fitのLLRを決定 (下図の黄色)
- 3.1で求めたbest fitのLLRがPE500回で得たbest fitの LLRのうち、どの位置にあたるかでp値が決定する

p値 < 2.87×10⁻⁷: 発見 この解析ではp値= 0.678

<u>Best Fitの結果</u> LLR=-2.4 M_{Z'}=1.2TeV σ_{Z'}=0.0018pb

Limit setting

信頼度=95%でのシグナルの個数の上限をそれぞれのM_{uu}で求める

求まったNz'を左式を使ってZ'の生成断面積に変換

σ_z = 969 pb (理論値) Acc_z/Acc_{z′}=アクセプタンスの比

<u>Summary</u>

- √s=7TeVでの陽子衝突データ(5fb-1)を用いてミューオン対に崩壊 する新粒子の探索を行った
- p値を計算した結果p=0.678で発見には至らなかった為、limitを計算
- その結果Z'_{SSM}で2.ooTeVまでC.L.=95%でその存在を棄却した

Backup slides

<u>2012年のデータを用いた解析結果</u>

- 重心系エネルギー8TeV
- 積算ルミノシティ20fb⁻¹
 発見には至らず(p-value=0.98)

"Search for high-mass dilepton resonances in 20 fb⁻¹ p of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS experiment" (ATLAS-CONF-2013-017)

	Observed	Expected
Z'	2.48TeV	2.52TeV

<u> $H \rightarrow \mu \mu$ result (2012)</u>

2012年に取得された20.7fb⁻¹のデータを使用 重心系エネルギー8TeV

Standard Model Higgs Branching Ratio at 125GeV $H_{SM} \rightarrow \gamma \gamma$:2.28 × 10⁻³ $H_{SM} \rightarrow \mu \mu$:2.20 × 10⁻⁴

結果
 信号は見られず
 95%で生成断面積のlimitを設定
 →125GeVでSM予想の9.8倍(observed)と、8.2倍 (expected)

"Search for the Standard Model Higgs boson in $H \rightarrow \mu^+ \mu^-$ decays with the ATLAS detector" (ATLAS-CONF-2013-10)

<u>ミューオン対のp_T、y分布</u>

<u>QCD バックグラウンドの見</u>

<u>積もり</u>

 QCDのバックグラウンドは主にbb及び ccからの崩壊

1. *bb*、*cc*のMCサンプルのtrack isolated variable(Σp_T(dR<0.3)/p_T)を使ってfake rateを 見積もる(anti-isolated trackに対する isolated trackの割合)

Fake rate = $\frac{\sum p_T^{trk} / p_T^{\mu} < 0.05}{0.1 < \sum p_T^{trk} / p_T^{\mu} < 1}$ $\Box \Box \nabla t Fake rate = 0.02939$

2. Dataからanti-isolated di-muonを使って 不変質量の形を求める (QCD multi-jetの形 が求まる)

←MCでは統計量がない為

3. 2.で求めたmassの形にfake rateをかけた ものがQCDバックグラウンドとなる

tt, Di-boson background extrapolation

tī, di-boson MC sample についてはhigh-massで 統計量が少ない為、 fittingで補う

<u>Fitting 領域</u>

TTbar: 0.2-0.8 TeV Di-boson: 0.45-1.45 TeV

<u>Fitting 関数</u>

