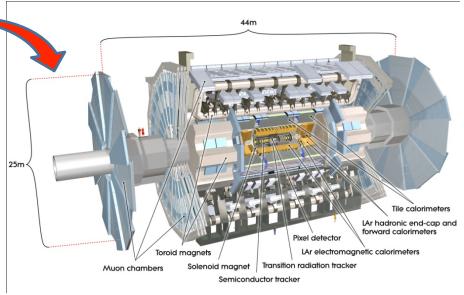

LHC、ATLAS 実験におけるTeV スケール重力事象の探索


兼田充

CERN

2013年3月28日 日本物理学会第68回年次大会

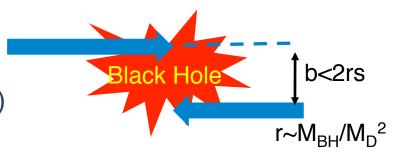
LHC, ATLAS

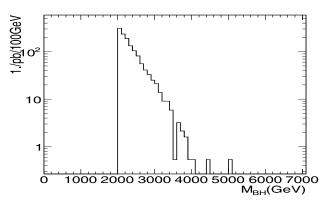
直径22m、長さ44m、総重量7000t

- LHC(Large Hadron Collider)
 - → 陽子陽子衝突型加速器
 - → 周長約27km
 - → 2010, 2011年: √ s=7TeV
 - → 2012年: √ s=8TeV

- ATLAS (A Toroidal LHC ApparatuS)
 - → LHC上に設置されている汎用検出器
 - → 2011年: 5.25fb⁻¹ recorded
 - → 2012年: 21.7fb-1 recorded

TeVスケール重力

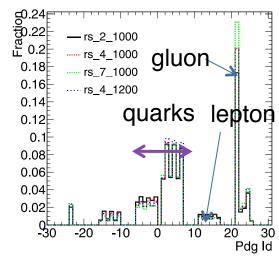

- 余剰次元を扱う理論では階層性問題をTeVスケールの重力(TeVスケールプランクスケールM_D)の存在により解決する方法を示唆している
 - → Large Extara Dimension (ADD), Warped extra dimension (RS)
- LHCではTeVスケール重力事象の

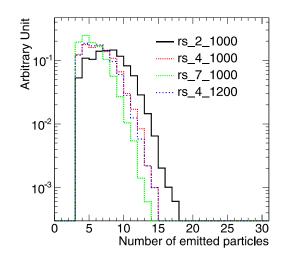

直接探索が可能: blackhole、string ball、

重力散乱、など

(高エネルギー領域に連続的なEnhancement)

- Blackholeは非常に生成断面積が大きい
 → σ ~ ~πr_s² ~100pb (for M_D ~ M_{BH} ~TeV)
- TeVスケールのBlackholeはHawking radiationにより大量の高エネルギー粒子を 放出し直ぐに崩壊する




ブラックホール質量分布

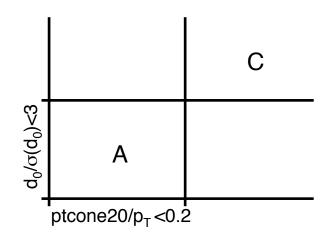
Blackhole/String ball 探索

- ATLASでは3つの違う解析で探索を行なっている
 - → Multijet/Multi-object final state
 - →シグナルのアクセプタンスが大きい(~100%)
 - →QCD multijetプロセスが大きなバックグラウンド
 - → Multi-object at least one lepton
 - $\rightarrow p_{T}>100$ GeVのleptonを要求, シグナルのアクセプタンス~10%
 - →Z/W+jetsが主なバックグラウンド(QCDバックグラウンドを抑制出来る)
 - → Same-sign di-muon
 - → p_T >25,15GeVの同電荷のmuonを要求, シグナルのアクセプタンス~10%
 - \rightarrow 主なバックグラウンド: ttbar, b/c, μ -fake

Multiplicity of Decay Particles

Same-sign Dimuon Analysis

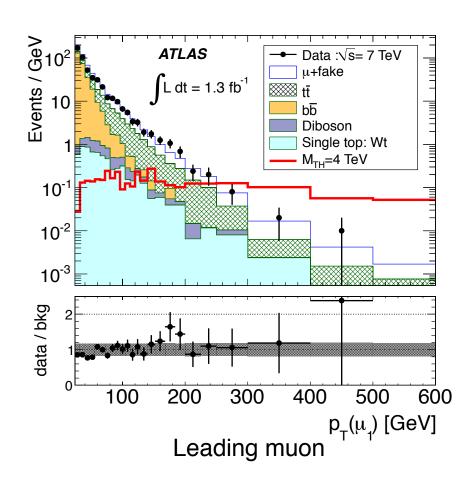
- Data: $\sqrt{s} = 7\text{TeV}$, 1.3 fb⁻¹
- イベントセレクション
 - → Muon:
 - \rightarrow Leading muon: p_T>25GeV, l η I<2.4, isolated
 - \rightarrow Second muon: p_T>15GeV, l η I<2.4, same charge as leading muon
 - → Track (Inner detector) multiplicity:
 - \rightarrow Inner detector tracks, p_T>10 GeV, l η I<2.4
 - $\rightarrow N_{trk} \ge 10$
- バックグラウンドの見積もり
 - →ttbar: MC
 - →b/c: Data driven, N_{trk} <10 control region
 - → μ-fake: Data driven, W control region


バックグラウンドの見積もり

b/cイベントの見積もり

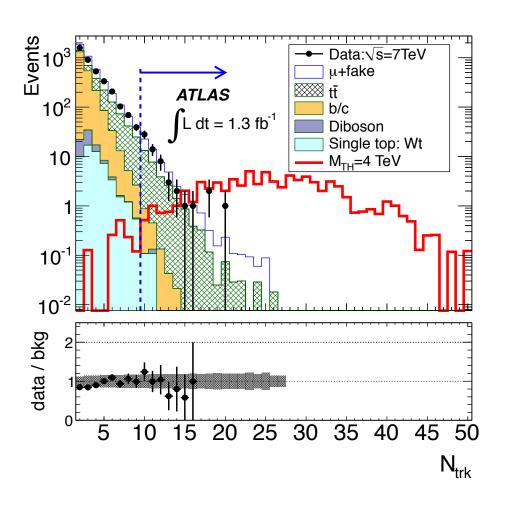
・ 最初に N_{trk} <10のイベントの中からシグナル領域の定義の μ のクォリティーカットを反転させた領域のイベントを選ぶ(C)

この領域の分布を使いA領域の分布を見積もる


 ここで求めたN_{trk} 分布をexp関数でフィットし N_{trk}≥ 10へ外挿する

μ-fakeイベントの見積もり

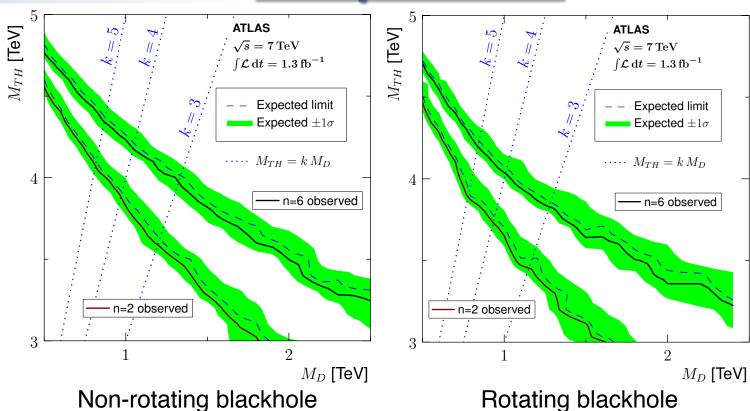
- W+jetsイベントをControlサンプルとして使う
 - 1 μ + 1 same chager track
 - 25 < MissingE_T < 80 GeV, 50<TransMass<120GeV
- ・ この内2μイベントを抽出しrateを見積もる
 - ttbar等、他のバックグラウンドはMCを用いて除く
 - trackのp_T bin毎で分ける
 - ~10⁻³
- ・ シグナル領域を1μに変えて集めたイベントにrateを適用し見積もる


Muon p_T Distribution

Before N_{trk} cut

N_{trk} 分布

• b/cの分布はFitで求めたもの


イベント数と誤差

Process	Events
b/c	$0.77 \pm 0.77 \text{(syst)}$
ttbar	29.2 ± 4.1(syst) ± 1.1(lumi)
+fake	25.6 ± 0.3(stat) ± 5.2(syst)
Other backgrounds	0.25 ± 0.11(syst)
Predicted	$55.8 \pm 0.3(stat) \pm 6.7 (syst) \pm 1.1(lumi)$
Observed	60

全てのイベントセレクション後のイベント数

- -> Background Onlyの見積に比べて有意な違いは得られなかった
- -> Observed limit: σ x BR x A < 0.018 pb Expected limit: σ x BR x A < 0.016 pb (with 0.012-0.022 1σ error band)

Interpretation

- Blackhole生成時に回転運動量を持つケースと持たないケースそれぞれに対して生成断面積に対して M_D - M_{TH} でのリミットを付けた
- 回転運動量を持つ場合は初期に放出粒子のエネルギーが大きくなる
- -> 結果放出粒子数が少なくなりアクセプタンスが落ちる
- Non-rotating: $M_{TH} > 3.8$, (4.2) TeV at $M_D = 1$ TeV for n = 2 (6) $M_{TH} > 3.4$, (3.8) TeV at $M_D = 1.5$ TeV for n = 2 (6)

まとめ

- 2011年にATLAS実験で取得した1.3fb⁻¹の重心系エネルギー7TeVの陽子陽子衝突データを用いてTeVスケール重力の探索を行った。
- 本講演ではsame-sign dimuonイベントを用いた結果を発表した
 - → バックグラウンドクリーンなシグナル領域を得られる。
- データはSMプロセスと比べ有意な違いは見られなかった
 - \rightarrow Prediction: 55.8 \pm 0.3(stat) \pm 6.7 (syst) \pm 1.1(lumi)
 - \rightarrow Data : 60
 - \rightarrow Observed limit: σ x BR x A < 0.018 pb
- この結果を用いRotating, Non-rotating2つのケースについてBlackole生成ヘリミットをつけた
 - Non-rotating: $M_{TH} > 3.4$, (3.8) TeV at $M_D = 1.5$ TeV for n = 2 (6)
- 8TeVデータを用いた結果も準備中である
 - 非常にエネルギーの高い領域を使っているので、重心系エネルギーの増加により非常に大きな改善が期待できる