LHC-ATLAS実験における WH->Inubbを用いたヒッグス粒子の探索

日本物理学会 2012年秋季大会 京都産業大学 13aSH-4

Introduction

- <u>H->bb</u>: 126GeVのHiggsからの崩壊比が60% 弱と大きいのが特徴。
- <u>ggF,VBF</u>:生成断面積の大きい過程。終状態 がjetのみとなるため、有効なトリガーが無い、信号が膨大なQCD背景事象に隠れるな どの問題があり、発見の感度が悪い。
- VH随伴生成:生成断面積は小さいが、W/Z の崩壊で生じる、運動量の大きなレプトンで トリガーを掛けられ、同時に背景事象も抑制 出来る。H->bb探索のメインチャンネル。
 - WH->lvbb:本講演
 - ZH->vvbb:Next(木内さん)
 - ZH->llbb
- <u>ttH随伴生成</u>:終状態にH->bb以外のb-jetを 含むなど、難しいチャンネル。

ヒッグスの崩壊比

Background Process

BG Process	MC Generator	Comment
<u>W+jets</u>	Powheg/Sherpa	Wbb : irreducible, その他、W+c/W+lightも
<u>ttbar</u>	MC@NLO	tt->lvlvbb/lvqqbb
single top	MC@NLO/AcerMC	tb->lvbb : irreducible
QCD multijet	(Data Driven)	jetがleptonにfakeする事象
Diboson	Herwig	WZ->lvbb : irreducible, mbb=90GeV peak
Z+jets	Alpgen	

Event Selection

Categorization

- WHチャンネルは、HiggsとWが高いPtを持って生成された場合と、そうでない場合とで、S/N比が大きく変わる。
 pTで分類することで、感度を上げることができる。
- 今回は、WのpTで5つのbinに分けた。
 - 0-50GeV
 - 50-100GeV
 - 100-150GeV
 - 150-200GeV
 - 200-GeV

5

Optimization

- pTWのbinごとに、信号事象、背景事象の分布は大きく変わってくる。
- それぞれのbinで、カットの閾値を最適化した。
- pTW>200GeVのbinでは、s/sqrt(s+b)が約30%上昇

	0-50	50-100	100-150	150-200	200-
MET	25-	25-	25-	25-	50-
MT	40-120	40-120	40-120	0-120	0-120
ΔRbb	0.7-	0.7-	0.7-	0-1.6	0-1.4

6

BG Estimation

BG Process	
W+jets	MCから分布の形を見積もり、Di-b-jet mass分布のサイドバンド領域 (0-80GeV,150-250GeV)のデータにフィットすることで規格化
top	W+jetsと同様に、MCから分布を見積もり、データから規格化した。 フィットはW+jetsと同じ領域で、同時に行った。
QCD multijet	Data Drivenで見積もった。
Diboson	MCから見積もった。

- MCのb-tagについて
 - 例えばW+light jetは、b-tagによってイベント数が4桁落ちる。このためb-tagを要求するとMCの統計量が不足してしまう。
 - このようなMCに対しては、b-tag前の分布 を、データから測定されたb-tag efficiency でウエイトすることにより、b-tag後の分布 を再現した。

QCD Background Estimation

- QCD事象:ジェットがレプトンにフェイクすることで背景事象となりうる。
- こうしたイベントはシミュレーションによる見積もりが困難→データから見 積もった。
- 今回、QCDの見積もりにはAnti-isolation Methodを使用した。
 - レプトンのIsolation cutを反転させて、フェイクレプトンが支配的となる分布を 作り、これをQCD背景事象のテンプレートとする。
 - このテンプレートを、データにフィットして規格化し、QCD背景事象とした。

Result (Blind)

- Di b-jet Mass分布。
- シグナル領域(80-150GeV)のデータはブラインドしてある。

9

- Data

top

Ζ

200

Data

top

multijet

— Signal*5

m_{bb}[GeV]

Diboson

W

Z

200

150

multijet

Diboson

- Signal*5

250 m_{bb}[GeV]

W

- Significance = s/sqrt(s+b)をヒストグラムの各binごとに計算し、二乗和をとったもの。系統誤差を考えない場合の大まかな発見感度を表している。
- High pT binの感度が高く、Categorizeすることにより全体で 30%のImprovementがあった。

- WH->lvbbチャンネルでのHiggs探索を行った。
- サイドバンド領域において、データとよく一致する背景 事象分布が得られた。
- 今後は、各背景事象ごとのコントロール領域における、 データとの一致を確認する。
- また、系統誤差を導入し、リミット計算を行う。
- HCPに結果を出す。

Number of Background Events

• Di-b-jet mass (80-150GeV)

	0-50GeV	50-100	100-150	150-200	200-	All
Signal	4.57	5.58	3.31	1.63	1.97	17.1
Total BG	779	832	350	77.3	40.8	2080
W+jets	316	270	88.7	23.3	17.7	716
(W+light)	24.9	20.8	6.14	0.99	0.58	53.5
(W+c)	150	140	49.6	11.8	7.23	359
(W+b)	141	109	33.0	10.6	9.92	303
top	301	477	246	49.2	21.1	1094
multijet	144	73.6	9.08	2.12	0.33	227
Diboson	9.81	10.2	3.56	2.68	1.65	27.9
Z+jets	8.90	1.90	2.62	0	0	13.4