LHC-ATLAS実験における ZH → vvbb 過程を用いたヒッグス粒子探索

木内健司、永井義一^A、原和彦、金信弘 筑波大学、CPPM^A

Outline

- Introduction
- ATLAS MET Trigger
- Studies of MET trigger for $ZH \rightarrow \nu\nu bb$
 - understanding trigger turn on curve
 - evaluation of Scale Factor
- Summary

Introduction

・新粒子は"標準模型"ヒッグスなのか?

- ボゾン($H \rightarrow \gamma\gamma, WW, ZZ$)を用いた解析で発見

– フェルミオン($H \rightarrow \tau\tau, bb$)への崩壊を確認することが必要不可欠

- $ZH \rightarrow v\bar{v}b\bar{b}$:大きな横方向消失運動量(MET)と2つのb-ジェット
 - 崩壊分岐比 *Z* → $(\nu_e \overline{\nu_e} + \nu_\mu \overline{\nu_\mu} + \nu_\tau \overline{\nu_\tau})/Z$ → $(e\bar{e}, \mu\bar{\mu}) = 6$

2011年bbチャンネルで最高感度 6xSM @ 125 GeV

MET trigger

METトリガ:METを持つ事象を選別し記録する

- LHCの衝突回数 : 20 MHz → トリガ後 : 400 Hz前後
- L1の計算時間: 2.5 us → 粒子の再構成は不可能
 再構成後に計算したOffline METに比べ解像度が悪い
- → 緩やかな立ち上がり
- ・ 背景事象: QCD事象のジェット測定ミスが作るMET
 - QCD事象の高い生成断面積
 - MET小さくなるにつれて指数関数的に増える
- → 高いしきい値

METトリガは信号の一部しか記録できない →トリガの難しさがボトルネック より多くの信号を記録するよう改善が重要

2012年METトリガの改善点

- 新たなMETアルゴリズムの導入
 - Level 2: カロリメータの全範囲情報の使用
 - Event Filter : クラスタリングの導入
- 擬似トリガレートの抑制
 - L1のカロリーメータノイズを抑制
 - ビームトレイン初期の事象を棄却(カロリメータ信号構造に起因)

2012トリガでの $ZH \rightarrow vvbb$ 記録効率の上昇

2011トリガ: L1 50 GeV \rightarrow L2 60 GeV \rightarrow EF 70 GeV 2012トリガ: L1 40 GeV \rightarrow L2 新45 GeV \rightarrow EF 新80GeV $ZH \rightarrow vvbb(m_H = 125 \text{ GeV}) pythia8 300k event を用いて評価した$

Trigger Efficiency MET distribution Efficiency 1800 1800 0.8 1400 1200 0.6 1000 800 0.4 2011 Trigo 600 400 0.2 2012 Trioge 200 0 0 50 100 150 200 50 100 150 250 n 200 250 E^{miss} (GeV) E^{miss}₇ (GeV)

2011トリガ効率: 2Jet+QCDカット通過事象 26%, 全カット通過事象 69% 2012トリガ効率: 2Jet+QCDカット通過事象 38%, 全カット通過事象 86%

トリガ "turn on 領域"の解析

- *ZH* → *vvbb*では"Turn on 領域"の解析を行う
 turn on領域、80 GeV 160 GeVに多くの信号が存在する
- MCのトリガシミュレーションがデータを良く再現できていなければ解析を行うことができない!!
- $ZH \rightarrow vvbb(m_H = 125 \ GeV) pythia8 \ MC \ 684 \ fb^{-1}$ 2ジェット事象の2012年トリガ効率とMET分布

W/Z事象を用いたMET分布のdata/MC比較

データ: 2012/05/20 - 2012/08/22 まで8TeV 6.4 fb^{-1} のデータを使用 ミューオントリガでトリガし、 $W \rightarrow \mu\nu / Z \rightarrow \mu\mu$ の事象選別を行った μ 粒子の運動量成分を除外したMETを用いる **→**METトリガは μ 粒子を考慮しない、 μ 粒子はニュートリノのように振舞う MCジェネレータはW、Z共にSherpaを使用

 $Z \rightarrow \mu\mu$ Purity ~100%

MET > 80 GeVの領域を対象として解析する Z/W事象の純度を確認 → Z:~100%, W:~90% 誤差は統計誤差のみ

W選別時の背景事象混入による影響評価

主な背景事象はttbar、Z→mumu

→背景事象の影響は統計の範囲内

データとMCの比較結果 : $W \rightarrow \mu \nu \ bZ \rightarrow \mu \mu$ 事象

W->munu turn on curve

Z->mumu turn on curve

フィット結果と補正関数

W->munu turn on curve

Z->mumu turn on curve

補正関数の系統誤差

W → µv MC Sherpa→dataをSFとし、誤差として以下を自乗和

- フィット結果の誤差: Sherpa WおよびData Wの統計誤差より
- 物理事象依存性 : SF Sherpa W SF Sherpa Z

今後MC生成による違いを見積り考慮する 補正量は最大で 7% ± 3% @ 90 GeV 程度

まとめ と 展望

まとめ

- *ZH* → *vvbb*の記録効率が26(69)%→38(86)%に改善した
 2012年METトリガのTurn on 領域の理解をするため
 - $W \rightarrow \mu\nu, Z \rightarrow \mu\mu$ を用いてデータ、MCの比較を行った
 - 効率曲線を誤差関数の積で関数化した
 - 取得したパラメータから補正する関数を計算した
 - 各補正関数は5%程度で一致している
 - 補正量は最大 7% ± 3% @ 90 GeV

展望

ZH → *vv*bb解析に2011年解析していなかった MET < 120 GeV の領域を追加して測定する

BGRP7 trigger

- Trigger rate in first few bunches is high due to the unstable pedestal in Lar Calo.
- BGRP7 trigger avoid first 3 bunches.
 - lower threshold with same rate
 - ~10 % data loss

Available triggers in 2012

- -2012.5.19
 - xe80_tclcw (L1_XE50 \rightarrow L2_xe55 \rightarrow EF_xe80_tclcw)
 - xe80T_tclcw_loose (L1_XE40_BGRP7 \rightarrow L2_xe55T \rightarrow EF_xe80T_tclcw_loose)
- 2012.5.20-
 - xe80_tclcw_loose(L1_XE40 \rightarrow L2_xe55 \rightarrow EF_xe80_tclcw_loose)

$ZH \rightarrow vvbb$ acceptance シミュレーションを用いて改善されたトリガの性能を調べた MC: ZH→vvbb (mH = 125 GeV) pythia8 Cut: 1st Jet pt > 45 GeV, Jet pt > 20 GeV, dPhi(min(jet,MET))>0.6

W+Jets background

 $m_{b\overline{b}}$ [GeV]

W→munu 事象、および Z→mumu 事象の選別

- ミューオンの計算を除いたMET
 - $-MET_{noMu} = MET_e + MET_{\mu} + MET_{\tau} + MET_{jet} + MET_{others}$
- データ、MCの比較にW(munu)+Jets、Z(mumu)+Jetsを用いる

Ζ

– ミューオンやジェットの定義は $VH(H \rightarrow bb)$ 解析と同等

トリガ:1 muon pT > 24 GeV Muon:1st pT > 25 GeV 50 GeV < Transverse mass < 120 GeV 電子(pT > 10 GeV), Z事象の排除

W

トリガ : 1 muon + pT 13 GeV 2 muon Muon : pT > 15 GeV (2 muon トリガ) pT > 25 GeV and pT > 10 GeV (1 muon) 83 GeV < Mz < 99 GeV 電子(pT > 10 GeV)の排除

– ヒッグスに近いJetを選ぶ (1st Jet_pt > 45 GeV, 他Jet_pt>20 GeV)

- W事象にはトップ・クォークを除外するためbジェットを除去
- QCD事象の排除: dPhi(min(MET, jet)) > 0.6

W および Z 選別

- W
 - EF_mu24i_tight and EF_mu36_tight
 - muon pt > 25 GeV
 - loose muon(pt > 10 GeV)=2