13pSK-3

LHC-ATLAS実験における WH→WWW→lvlvlv過程を用いた ヒッグス粒子の探索

久保田隆至、Elisabetta Barberio, Pere Rados (メルボルン大学) 他 ATLAS Collaboration

日本物理学会秋季大会@京都産業大学 2012年9月13日

Outline

- 2011年の全データ(7 TeV, 4.7 fb⁻¹)を用いた解析の概要
 - ICHEP 2012で報告
 - CONF Note (http://cdsweb.cern.ch/record/1460390)
- 2012年(8 TeV)のデータを解析中
 - 解析改善に向けた取り組み

- ~2.5 fb
- 背景事象が少ない(S/N~0.15)
- ヒッグスはW粒子とのみ結合

 $\Delta R = \sqrt{\eta^2 + \phi^2}$

解析のターミノロジー

レプトン番号付け ヒッグ	ス粒子から
— ユニークな電荷:lep0	
— lep0に近い(ΔR):lep1	
— 残りもの:lep2	

W粒子から

- OSSF レプトン対を持つ
 - Z enriched samples
- OSSF レプトン対を持たない
 - Z depleted samples

OSSF (Oppositely Singed Same Flavor) 背景事象の種類が異なる→解析も異なる

事象選別

• 背景事象

- 3本の実レプトン: W(Z/γ*), ZZ
- フェイクレプトンを含む: WW, Z+jets, top, bD, cc, W+jets

カット変数の分布

日本物理学会秋季大会@京都産業大学

カット変数の分布

背景事象の規格化

• MC推定をControl regionの情報で規格化(WZ, top)

背景事象の規格化(WZ)

日本物理学会秋季大会@京都産業大学

背景事象の規格化(top)

- non-isolated レプトンでcontrol regionを構成
- シグナル領域への外挿で大きな不定性(100%)

b-taggedジェットを要求

日本物理学会秋季大会@京都産業大学

シグナル領域事象数

	Obs.	signal	Total BG	W(Z/γ*)	WW	ZZ	Тор
Z-enri.	3	0.39±0.0 6	3.7±0.9	3.2±0.8	0.09±0.0 6	0.17±0.0 7	0.28±0.1 2
Z-dep.	0	0.22 ± 0.0 4	0.25±0.1 5	<u>0.21±0.</u> 0 7	0	0.03 ± 0.0 3	0.01±0.1 0

系統誤差

- 測定系由来
 - Jet関係(energy scale, resolution, b-tagging efficiency)
 - lepton関係(energy scale, resolution, efficiency)
 - E^{miss}_T関係(Jet, leptonの不定性を伝搬、pile-up effect)
 - Luminosity (3.9 %)

更にggF, VBF解析とのoverlap除去でレプトン1本あたり5 %を計上

	Signal [125GeV]	$W(Z/\gamma^*)$	WW	ZZ	Z+jets	Тор	Total Bkg
Z enriched SR	19%	18%	31%	31%	0.0%	41%	19%
Z depleted SR	20%	22%	40%	66%	0.0%	670%	41%
WZ CR	18%	17%	18%	27%	30%	108%	17%

• 理論由来

- シグナル事象の断面積不定性
 - Renormalization & factorization scale < 1 %
 - PDF, α_s不定性 < 4 %

[arXiv:1101.0593]

- W粒子の偏極不定性 < 3 % [arXiv:1203.2165]
- PDF由来のacceptance 不定性:<6%(シグナル事象),<3%(背景事象)
 - Control regionで規格化しないサンプルのみ

ヒッグス断面積上限値

- 95%信頼度でのσ/σ_{SM}の上限値
- Z-enriched, depletedの2ビンのcounting experiment
- test statistics: profile likelihood $q_{\mu} = -2 \ln \left(\mathcal{L}(\mu, \hat{\theta}_{\mu}) / \mathcal{L}(\hat{\mu}, \hat{\theta}) \right)$
- CLs

解析の改善

現在の解析ではSMが排除できない

- 多変数解析(BDT)の導入(W(Z/γ*)の除去)
- 他のモードの導入
 - Hadronic tau decay
 - 2.5 fb → 5.1 fb (3 had tau)
 - SS di-lepton
 - 4.7 fb (w/o tau)
 - 10.7 fb (w/ tau (had, lep))

解析感度の外挿(改善を行わない場合)
7→8TeVの断面積増加:1.2と仮定

BDTの導入

• 2011年データを用いた感度向上の見積もり

- 8変数(pT (lep0, 1, 2), Mll01, Mll02, Mll12, Mlll, DRll02)

まとめ

ATLAS実験でのWH→WWW→lvlvlv過程の解析

- 2011年、7 TeV、4.7 fb⁻¹のデータを用いた解析
 - 95 % C.L. Limit on σ/σ_{SM} ~ 6.70 @ m_H = 125 GeV
 - W(Z/γ*)事象が感度を制限
- 2012年、8 TeVのデータを用いた解析
 多変数解析(BDT)を用いたW(Z/γ*)背景事象除去
 Hadronic tau, SS di-leptonモードの導入

under progress

バックアップ

背景事象の規格化(Z+jets)

Cutflow

北旦市名		$W(Z/\gamma^*)$	WW	ZZ	Z+jets	Тор
月京尹豕	Pre-selection	392±24	2.26±0.33	85±7	1720 ± 230	38.6±1.2
	Z enriched	390±23	1.84 ± 0.27	85±7	1720 ± 230	30.2±1.1
	At most 1 jet,					
	not <i>b</i> -tagged	335±21	1.65 ± 0.27	75±6	1550 ± 210	5.0 ± 0.5
	$E_{\rm T,rel}^{\rm miss} > 40 { m GeV}$	106±7	0.60 ± 0.15	1.9 ± 0.4	5.2 ± 2.8	1.88 ± 0.30
	Z mass veto	6.6+0.7	0.39 ± 0.12	0.31±0.11	1.5 ± 1.5	1.10 ± 0.22
- W(Z/γ*)が感度を制	<mark>很</mark> All cuts	3.2±0.8	0.09 ± 0.06	0.17 ± 0.07		0.28 ± 0.12
	Z depleted	1.36±0.15	0.42 ± 0.11	0.15 ± 0.05	2.1±0.8	8.4±0.6
	At most 1 jet,					
	not <i>b</i> -tagged	1.08 ± 0.13	0.37 ± 0.10	0.15 ± 0.05	2.0 ± 0.7	1.27 ± 0.29
	$E_{\rm T,rel}^{\rm miss} > 25 { m GeV}$	0.49±0.07	0.17 ± 0.07	0.03±0.03		0.52 ± 0.20
	All cuts	0.21±0.07	0.00 ± 0.05	0.03 ± 0.03		0.01 ± 0.10

仁 口 古 占		$W(H \rightarrow WW)$	$Z(H \to WW)$	$V(H\to\tau\tau)$	$H \rightarrow ZZ$	Observed	Total Bkg.
信亏争家	Pre-selection	1.78±0.15	3.56 ± 0.30	0.66 ± 0.06	0.97 ± 0.08	2077	2240±260
	Z enriched	1.36±0.11	3.50±0.28	0.54 ± 0.05	0.97 ± 0.08	2056	2220±260
	At most 1 jet,						
	not <i>b</i> -tagged	1.24±0.12	2.22 ± 0.21	0.48 ± 0.05	0.80 ± 0.07	1801	1960 ± 240
	$E_{\rm T,rel}^{\rm miss} > 40 { m GeV}$	0.61±0.05	0.54 ± 0.05	0.10 ± 0.01	0.01 ± 0.01	114	115±10
	Z mass veto	0.47±0.05	0.04 ± 0.01	0.04 ± 0.01		13	9.9 ± 2.2
	All cuts	0.34±0.06	0.03 ± 0.01	0.02 ± 0.01		3	3.7 ± 0.9
	Z depleted	0.43±0.06	0.06 ± 0.01	0.12 ± 0.02		21	12.49 ± 1.07
	At most 1 jet,						
	not <i>b</i> -tagged	0.40 ± 0.06	0.04 ± 0.01	0.11 ± 0.02		7	4.9 ± 0.9
	$E_{\rm T,rel}^{\rm miss} > 25 { m GeV}$	0.26±0.03	0.02 ± 0.01	0.04 ± 0.01		1	1.22 ± 0.24
	All cuts	0.18±0.04	0.01 ± 0.01	0.03 ± 0.01		0	0.25 ± 0.15

他のヒッグスモードからの寄与~15% ^{日本物理} その解析でまずデルとして扱う

WH→WWW

[arXiv: 1201.3084]