11aSK-3

ATLAS実験におけるWボソン事象を 用いた た粒子同定効率の測定とその改善

早大理工, KEK^A <u>三谷貴志</u>, 寄田浩平, 津野総司^A, 他アトラス・タウグループ

2012年9月11日(火)日本物理学会2012年秋季大会 @京都産業大学

- Higgsらしき粒子が126GeV付近で発見された。
 低質量領域において, τ粒子対崩壊はヒッグスの主要チャンネルの1つである。
- SUSYにおけるパラメータによっては、新粒子の τへの崩壊の分岐比が非常に大きくなる。

ヒッグス粒子や新粒子探索を行う際に,τは重要な粒子である。

• 本研究では、実データからW→ τ v事象を効率的に取り出し、 τ 粒子同定効率(ϵ_{ID})を測定し、 $SF_{ID} = \varepsilon_{ID}^{Data} / \varepsilon_{ID}^{MC}$ を求める。

 $\sigma = \frac{N}{L \times A \times \varepsilon_{ID}^{MC} \times SF_{ID}} \cdots$ 特に断面積 σ ,分岐比を精度よく測定するためには、IDの理解、SFの高精度の決定は極めて重要である。

11/Sep/2012

τ粒子の特徴

- 崩壊モード
 - Leptonic tau (τ_l): BR~35% prompt leptonとほとんど区別がつかない。
 - Hadronic tau (τ_h): BR~65%
 1-prong (1p): τ⁻→π⁻ν+Nπ⁰ (N=0,1,2...)
 - multi-prong (mp): $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu + N \pi^0$ (N=0,1,2...)

➡ 本研究ではτ_hの粒子同定のみ考える。

- τ_hの特徴
 - 崩壊後, **奇数本の荷電粒子**(主にπ[±])を含む。
 - 細いジェットになり易い。

ATLAS実験では、τ_hの特徴を最大限に生かし、 多変量解析(**BDT**)によりτ_hを同定している。

→ 詳細は次ページ

11/Sep/2012

 ・・・実データ内には本物のτとともに大量のジェットが含まれている。
 → τ_hとジェットの飛跡数の分布の違いを用いて、実データ中に含まれるτ_hの量を 見積もる。・・・nTrack Fitting method

11/Sep/2012

τ_hとジェットをよりよく選別するため, コーンサイズをΔR<0.2→0.6に広げ飛跡を数える。 - 細いジェットのような振る舞いから、_{Th}の飛跡数は コーンサイズを広げることで大きく変化しない。

	ΔR<0.2	0.2<∆R<0.6	D
τ_{h}	1 or 3	無し or pile-up (soft)	大
Jet	n(n>0)	比較的大きいp _⊤ を持つ飛跡	/]\

0.2<dR<0.6内の飛跡を数える条件

11/Sep/2012

日本物理学会2012年秋季大会

 τ_h

Jet

飛跡

0.2

0.6

core

outer

SF=0.977±0.018(stat)±0.015(Sys) @ BDT Medium ID

データをよりよく理解するためにも、全く独立の他の事象での確認が重要である。

₩→τν事象の選択

・ データサンプル

2012 8TeV Run ∫L=5.8fb⁻¹ (4月-6月)

Tag & Probe method

− 大きな消失横運動量(MET)トリガー(tag)によって W→τv+jet事象を選択。

(EWは全体の~0.5%の寄与)

• 事象選択

Signal Region: τ template, EW template作成。

Selection

```
MET Trigger > 80GeV, \Delta \phi(jet,MET)>0.5
```

#Lepton = 0

```
MET > 100 GeV, b-jet veto
```

```
0.5 < \Delta \phi(\tau, MET) < 2.0, m_T < 80 GeV
```

 $m_T = \sqrt{2 p_T^{\tau} E_T^{miss} \left(1 - \cos \Delta \phi \left(\tau, E_T^{miss} \right) \right)}$

11/Sep/2012

日本物理学会2012年秋季大会

W→lv+jet Region: Jet template作成。

<u>τ template</u>

- MCを使用:W→τv事象(Pythia)
- 事象選択: Signal Region
 - ーτ_h候補とTruth情報とのMatchingをとることで τ templateを作成。
- ・系統誤差
 - Pile-up
 - MC sample
 - ✓ Generator : PYTHIA8 vs Alpgen
 - ✓ Shower Models : QGSP vs FTFP_BERT
 - ✓ MC tuning : Default vs A2 tune
 - ✓ PDF model : CTEQ6L vs MSTW 2008
 - ✓ Detector geometry : Extra material
 - デフォルトのτ templateを用いたFit結果との差を 系統誤差として考慮に入れる。

11/Sep/2012

Jet template

- データサンプル:実データ
 - 2012 8TeV Run ∫L=5.8fb⁻¹ (4月—6月)
- 事象選択: W→lv+jet Region

一thにfakeしたjetを用いてJet templateを作成。

- Signal RegionとW→lv+jet Regionでp_T分布が良く合う。

系統誤差

- QCD jetの不定性(q/g fraction等)を考慮
 - □ 低MET Region : 70GeV<MET<120GeV
 - **ロ** デフォルト: MET>100GeV
 - □ 高MET Region: MET > 120GeV
- デフォルトのJet templateを用いたFit結果と 0.02
- の差を系統誤差として考慮に入れる。

0^L

5

10

Number of tracks

15

Top事象の除去

Jet templateは、tt事象を含んでしまう。
 ...Jet template中に本物のτが混在する。

b-jetを含む事象を除去することで、 tt事象を排除し、Jet templateから本物のτを取り除く。

11/Sep/2012

日本物理学会2012年秋季大会

 W^+

e.g.) $Z \rightarrow \tau \tau$ (BDT Medium)

BDT Loose

BDT Medium

BDT Tight

11/Sep/2012

得た。

11/Sep/2012

Summary

- 消失横運動量METを用いて、実データからW→τv事象を効率的に 取り出し、それを用いてτ粒子同定効率ε_{ID}、SF_{ID}を測定した。
- QCD jetの不定性や, pile-upの状態, MCのGeneratorの違いを系統誤差
 として考慮に入れている。
- 他の解析と矛盾のない結果を得た。
 統計誤差が~10%,系統誤差が~20%と比較的大きい。

Future Plan

- Jet templateの系統誤差が大きな割合を占めているので、
 Jet templateの理解を深めて系統誤差を小さくする。
- SFのp_T, η, <μ>依存性を測定する。
- 2012年全データも使用しX→τ+xの物理解析に重要な役割を果たしていく。

Backup