LHC – ATLAS実験における 終状態にタウを含む トップクォーク対生成断面積の測定

高橋 悠太 戸本 誠 (名古屋大学) 日本物理学会 第67回年次大会

イントロダクション

1/9

 $H^{\pm} \rightarrow \tau \nu$

 \mathcal{V}_{τ}

 \mathcal{V}_{l}

- 終状態にタウを含むトップクォーク対生成断面積
 荷電ビグス粒子 (H[±])の存在に高い感度
 - m_{H±} < m_{top} ならば、標準理論より 高い生成断面積が観測される可能性
- LHC ATLAS実験
 - 現存唯一のトップクォークファクトリー

 \bigcirc

 \boldsymbol{g}

生成断面積の測定

- ・使用データ
 - 2 fb⁻¹ (約33万のトップクォーク対, 先行実験の 5 倍)
- 測定手法

(1) トップクォーク対の事象選別

- 10 mb (非弾性散乱断面積) → 165 pb (10⁸ reduction)
- 相方の W は, レプトニック崩壊したものを用いる (W→&)

W

W

(2) 信号事象数の見積り(N_{signal}) b

$$\Box \rightarrow \sigma_{t\bar{t}} = \frac{N_{signal}}{\varepsilon \cdot B(t\bar{t} \rightarrow \tau + l)} \cdot \frac{1}{L} \quad (2 \text{ fb}^{-1})$$

事象選別効率 (10%, MC) / 崩壊分岐比 (2.5%, MC)

2/9

ハドロンコライダーにおけるタウ

3/9

- 検出器到達以前に崩壊
 - Leptonic decay ($\tau \rightarrow I_{VV}$, 35%)
 - Hadronic decay ($\tau \rightarrow \pi \nu \nu$, 65%) $\rightarrow \mathfrak{I}$ ェットとして観測
- タウジェットの特徴
 - 奇数本の荷電トラックを伴い、孤立して出易い
 - gluon / quark jet より幅が狭い

トップクォーク対の事象選別

- 期待される終状態に基づいて選別
 - レプトンの数 = 1
 - ジェットの数 ≥ 2 (うち1本は b-jet)
 - τ ジェット候補 ≥ 1
 - 1~3本の荷電トラックが含まれるジェット
 - 損失エネルギー > 30 GeV

信号事象数の見積り手法

• rらしさの指標, BDT (Boosted Decision Tree) を用いて template fitting

- τ に特徴的な 8 変数を元に多変数解析, 0~1 で点数付け

- Fake の種類 (b, gluon, quark jet) によって分布が異なる
- Lepton と τ の charge 相関に着目

✓ OS (異符号) = Signal + b + gluon + quark

- ✓ SS (同符号) = b + gluon + quark (W 経由なので OS > SS)
- \checkmark OS SS = Signal + quark
- OS SS 分布に対し、Signal + quark 起源の fake, 2つのテンプレートで fitting

フィッティングの結果

フィッティングの結果

信号事象を確かに捕えていることを、データから実証

7/9

生成断面積の測定結果

- ・測定に伴う誤差
 - 系統誤差: MCの信号期待値の誤差
 - → 各粒子の検出に関する不定性を ±1 σ で見積もる

系統誤差	Muon	Jet	τ	b-tag	MC model (*)	Total
+1σ	+0.9%	+2.6%	+9.5%	+7.9%	+8.7%	+13%
-1 σ	-1.0%	-2.3%	-5.8%	-8.4%	-12.2%	-14%

- ルミノシティー測定誤差 : ± 3.7%

(*) ISR/FSR, Generator, parton shower

- ・ 生成断面積の測定結果
 - $\sigma_{t\bar{t}} = 142 \pm 21 (\text{stat.})^{+20}_{-16} (\text{syst.}) \pm 5 (\text{lumi.}) \text{ pb}$
 - 理論 (164.6 ⁺¹¹-₁₆ pb) と矛盾なし
 - 今後誤差を抑え,他のchannelと比較

まとめ

- ・終状態に
 ・を含むトップクォーク対生成断面積
 – LHC-ATLAS実験で蓄積した 2.0 fb⁻¹を用いて測定
 - 10⁸ reduction を実現
 - $\sigma_{t\bar{t}} = 142 \pm 21 (\text{stat.})^{+20}_{-16} (\text{syst.}) \pm 5 (\text{lumi.}) \text{ pb}$ (*)
 - 理論の期待値 (164.6 +11-16 pb) と矛盾無し

(*) 1/fb, ATLAS-CONF-2011-119

$M_T(\ell, E_T^{miss})$ control plots

QCD is estimated from Non-isolated lepton sample

In the end, dominant BG become tt \rightarrow lepton + jet

11/9

Validation of OS – SS technique

- gluon, b-jet contribution is cancelled out without loosing signals (charge symmetric)
- QCD multi-jet events are also eliminated by this operation

QCD (e+ μ , τ_1)	OS	SS
N _{jet} > 2	8982	8630
$E_T^{miss} > 30 \text{ GeV}$	1987	1909
$\Sigma E_T > 200 \text{ GeV}$	1083	1271
b-tag	287	276

Acceptance uncertainty

electron $d\mathcal{A}/\mathcal{A}$	-1σ	$+1\sigma$	muon $\mathrm{d}\mathcal{A}/\mathcal{A}$	-1σ	$+1\sigma$
Muon p_T smearing (ID)	0.0%	0.0%	Muon p_T smearing (ID)	0.0%	0.0%
Muon p_T smearing (MS)	0.0%	0.0%	Muon p_T smearing (MS)	0.0%	+0.1%
Muon Trigger SF	0.0%	0.0%	Muon Trigger SF	-1.6%	+1.6%
Muon ID SF	0.0%	0.0%	Muon ID SF	0.0%	0.0%
electron p_T smearing	0.0%	+0.2%	electron p_T smearing	0.0%	0.0%
electron energy scale	-0.5%	+0.5%	electron energy scale	0.0%	0.0%
electron Trigger SF	-0.8%	+0.8%	electron Trigger SF	0.0%	0.0%
electron ID SF	-2.9%	+2.9%	electron ID SF	0.0%	0.0%
Jet energy scale	-3.4%	+3.0%	Jet energy scale	-2.8%	+2.3%
Jet energy resolution	-0.4%	+0.4%	Jet energy resolution	-0.5%	+0.5%
Jet ID efficiency	0.0%	0.0%	Jet ID efficiency	0.0%	0.0%
b-tag SF	-5.3%	+4.6%	$b{ m -tag}~{ m SF}$	-5.7%	+5.3%
ISR/FSR	-5.7%	+5.7%	ISR/FSR	-4.5%	+4.5%
PDF	-2.1%	+2.1%	PDF	-2.0%	+2.0%
Parton shower	0.0%	+0.3%	Parton shower	0.0%	+0.3%
MC generator	-0.7%	+0.7%	MC generator	-0.7%	+0.7%
τ ID (τ_1)	-5.0%	+5.0%	τ ID (τ_1)	-5.0%	+5.0%
τ ID (τ_3)	-7.1%	+7.1%	τ ID (τ_3)	-7.1%	+7.1%

Systematic uncertainty

electron $d\sigma/\sigma$	Fit Method	muon $d\sigma/\sigma$	Fit Method	
Muon p_T smearing (ID)	0.0% / +0.1%	Muon p_T smearing (ID)	+0.1% / +0.1%	
Muon p_T smearing (MS)	$0.0\%\ /\ -0.1\%$	Muon p_T smearing (MS)	-0.3% / $+0.3%$	
Muon Trigger SF	-0.1% / $+0.1%$	Muon Trigger SF	-1.1% / $+1.5%$	
Muon ID SF	$0.0\% \ / \ 0.0\%$	Muon ID SF	-0.1% / $0.0%$	
electron p_T smearing	$-0.2\% \ / \ 0.0\%$	electron p_T smearing	-0.2% / $+0.2%$	
electron energy scale	-0.2% / $+0.4%$	electron energy scale	-0.3% / $+0.1%$	
electron Trigger SF	-0.7% / $+1.0%$	electron Trigger SF	-0.1% / $+0.2%$	
electron ID SF	-2.8% / $+2.7%$	electron ID SF	-0.5% / $+0.6%$	
Jet energy scale	-1.9% / $+2.8%$	Jet energy scale	-2.0% / +2.2%	
Jet energy resolution	-1.2% / $+1.2%$	Jet energy resolution	-1.0% / $+1.0%$	
Jet ID efficiency	0.0% / 0.0%	Jet ID efficiency	-0.2% / +0.2%	
$b-{ m tag}~{ m SF}$	-7.5% / $+8.9%$	$b-{ m tag}~{ m SF}$	-7.7% / $+9.0%$	
ISR/FSR	-3.5% / +3.5%	ISR/FSR	-4.8% / +4.8%	
PDF	-2.1% / +2.1%	PDF	-2.0% / $+2.0%$	
Parton shower	-0.3% / $0.0%$	Parton shower	-0.3% / $0.0%$	
MC generator	-0.7% / $+0.7%$	MC generator	-0.7% / $+0.7%$	
τ ID (τ_1)	-2.7% / +3.0%	τ ID (τ_1)	-3.0% / $+3.2%$	In
τ ID (τ_3)	-2.9% / $+3.2%$	τ ID (τ_3)	-3.1% / $+3.4%$	~

Figure 5.30: The experimentally measured cross-section as a function of the *t*-quark mass assumption (solid red line), where the 1σ uncertainty is given with the red dashed line. The yellow band shows the cross-section prediction by the higher-order perturbative QCD calculation.