LHC-ATLAS実験における二光子に 崩壊するヒッグス粒子の探索(2)

<u>山口洋平</u>,山村大樹,田中純一, 増渕達也,中村浩二,浅井祥仁 第67回年次大会 関西学院大学 2012年3月27日

introduction

 $H \rightarrow \gamma\gamma$ での夏に向けての光子に関するimprovementの中から3つ 1. 光子identification

Neural Net導入によってidentification効率向上

- 2. isolationの改善 系統誤差軽減
- 3. 光子のenergy較正 126.5 GeVに見えているexcessはこの位置で正しいか CMS (124 GeV) とのずれが存在

本talkではこれらの評価を行う

real光子を得る方法: Z → IIγ

H → γγ では扱うのは光子 (とjet) だけなので、光子に対する測定器の性能を最大限に引き上げること、性能を正しく評価することが重要

- ・ 当然、光子に対する性能は、real光子を使って評価したい
 → 今まではelectronからのextrapolateで評価
- Z → Ilyによってreal光子を扱えるようになった 統計が増えたことで可能になった
 x-sec = 36 pb (Z → Il, M_{II} > 60 GeV, FSR photon (p_T > 15 GeV, |η| < 2.37))

$Z \rightarrow ||\gamma\rangle$

対して、

selection: $80 < M_{IIv} < 100 \text{ GeV}$ M_{IIν}でM_zが再構成される: Z → IIγ $45 < M_{||} < 85 \text{ GeV}$ photon Et > 15 GeV M_{II}でM₇が再構成される: ISR γ or Z + jet photon $|\eta| < 2.37$ photonとleptonがΔR = 0.4以上離れている

得られたphotonのパラメータ

- luminosity: 4.7 fb⁻¹
- # of selected events
 - Z → eeγ: 2665 (unconverted), 1072 (converted)
 - − Z → $\mu\mu\gamma$: 3904 (unconverted), 1729 (converted)
 - converted / unconverted: I+I-対にconvertした / していない
- purity 98 % 達成!!
 - 2%はZ + jet (control region, MCから評価)

光子検出効率

光子Identification効率

- Neural Net (NN) でIdentification効率
 - background rejectionの性能はそのままに
 - カットベースの再構成で使っている変数をNeural Netにインプット
 - 例えば電磁カロリメータでのシャワーの形状
- そのIdentification効率をZ → Ilyで評価
 cut baseから11%向上

系統誤差: データとMCの差 NNでは5%以下 → 論文 (cut base) と同程度

Phys. Rev. Lett. 108, 111803 (2012)

8

isolation

Photon isolation

- 光子 → isolateされる
- $\pi^0 \rightarrow \dot{c}h \tau v \dot{c} v$

- EM-calo isolation
 - EM-calorimeter内のclusterの自分以外のenergy deposit
 - 他のactivityと離れているかの指標
- ノイズのsuppressionを改善
- Clustering手法を変えたisolation variableの導入

EM-calo isolation variable: ドーナッツの部分のenergy

Isolation variable

光子energy較正

Energy較正

- Energyの較正が不十分だとHiggs mass resolutionが低下、Higgs発見能力 に影響
- また当然、excessの位置の精度にも重要
- Higgsのmassは光子のenergyとdirectionから測定される

 $M_H = \sqrt{E_1 E_2 \left(1 - \cos \phi_{12}\right)}$

- *E_i*: 光子のenergy
 φ₁₂: 2光子のなす角度
- 現在、direction (φ_{12}) よりenergy (E_i) がmass resolutionに効いている

Z → IIγを用いたEnergy較正

αをスキャンし、M_{II}分布がデータとMCで一致する点を探す

 $\alpha_{\text{unconv}} = \begin{cases} 0.002 & \pm 0.004 \,(\text{sts.}) \pm 0.005 \,(\text{sys.}) \,, \, (Z \to ee\gamma) \\ -0.001 & \pm 0.003 \,(\text{sts.}) \pm 0.003 \,(\text{sys.}) \,, \, (Z \to \mu\mu\gamma) \end{cases}$

convertedについては、調査中

*系統誤差はleptonのenergy uncertainty

- 夏に向けて光子に対する性能を向上させている
- それをZ → IIγを使って評価
 - real光子を用いての評価は始まったばかり
 - ・ identification効率 Neural Netで効率 11 % 向上

 Energy較正 unconverted photonに対しては ~0.6 %の精度

backup

Background study

Same Sign (SS) leptonペア: SSをleptonペアに要求すると、以下が残る

- 1. QCD
- 2. charge flipping lepton
- 3. lepton-photon confusion

MCでよく再現されていること、イベント数が 十分少ないことから、これらが無視できると 確かめられた