ATLAS 実験におけるトップクォーク対不変質量を関数とした生成微分断面積の測定

山田美帆,海野義信^A,神前純一^A,東城順治^A 総研大,KEK^A 2011年 3月 27日 日本物理学会 第67回年次大会 関西学院大学

イントロダクション

LHC実験(√s=7TeV)でのトップクォーク対生成微分断面積の精密測定を行う。

さらに、LHC で期待されている、重い Z'や Kaluza-Klein gluon などトップクォーク対へ強く結合する粒子の存在は、微分断面積の分布に大きな影響を与える。

2011年ATLAS実験では約5.2fb⁻¹のデータを取得した →約870,000のトップクォーク対が生成

イベントセレクション

トップクォーク対の再構成

各生成粒子の4元運動量を再構成し、トップクォーク対の再構成を行う。 Kinematic Likelihood Fit

 $L = BW(W_{had}) \cdot BW(W_{lep}) \cdot BW(top_{had}) \cdot BW(top_{lep}) \cdot TF(E_{jet1} | E_{bhad}) \cdot TF(E_{jet2} | E_{blep}) \cdot TF(E_{jet3} | E_{q1}) \cdot TF(E_{jet4} | E_{q2}) \cdot TF(E_{miss} | p_{x,v}) \cdot TF(E_{y}^{miss} | p_{y,v}) \cdot TF(E_{l} | E_{l})$

ニュートリノ pz: Wボソンの質量を仮定した2次方程式より解を得る。

$$E_{v}^{2} = (p_{T}^{v})^{2} + (p_{z}^{v})^{2}$$

$$m_{W}^{2} = (E^{lep} + E^{v})^{2} - (p_{T}^{lep} + p_{T}^{v})^{2} - (p_{z}^{lep} + p_{z}^{v})^{2}$$

$$ikelihood の式においてneutrino p_{z} と して扱う$$

BW: ブライトウィグナー関数

レプトン崩壊、ハドロン崩壊するWボソン、トップクォークのブライトウィグナー確率分布関数 TF:トランスファーファンクション

各オブジェクトの再構成されたエネルギーを生成粒子のエネルギー、運動量に変換する確率分 布関数

生成粒子のエネルギー、運動量をパラメータとし、Likelihood フィットを行う。

→Likelihoodが最小になるような生成粒子のエネルギー、運動量、ジェットの組み合わせを探す →生成粒子の4元運動量を再構成

基本的な運動学量

再構成されたトップクォーク対の質量

Electron Channel

Systematic source	250-450GeV (%)	450-550GeV (%)	550-700GeV (%)	700-950 GeV(%)	950-2700GeV (%)
Jet Energy Scale	9.8	6.8	4.5	2.2	0.1
ISR/FSR	5.4	7.2	6.8	4.1	3.2
Generator	8.9	8.0	9.3	6.5	0.1
PS/Fragmentation	10.2	10.8	11.1	9.2	5.0
W+jets normalization	2.4	2.7	3.5	6.2	9.2
QCD normalization	10.9	6.1	8.3	11.9	15.3
systematics sum	27.7	26.1	28.8	21.4	18.9
statistics	2.0	2.7	3.0	3.6	5.3
Luminosity	3.9	3.9	3.9	3.9	3.9
total	27.8	26.3	28.9	21.7	19.7

まとめ

- 2011年 4.7fb⁻¹ のデータを用いて、トップクォーク対の質量を関数とした生 成微分断面積の測定を行っている。
- 各運動学量の分布においてモンテカルロシミュレーションがデーターをよく再現することが分かった。
- トップクォーク対の質量2.7TeV以下で標準模型を外れる兆候は見られない。

今後の課題

- 系統誤差の低減
- 高い統計量に合わせてbinningの最適化を行う。
- Unfoldingを行い、生成粒子レベルの微分断面積を求める。
- →素粒子標準模型での予測値との比較を行い、新しい物理に対する情報を 得る。

Backup

- Single lepton trigger
 - Electron channel Isolated electron($E_T > 25$ GeV) Missing $E_T > 30$ GeV W transverse mass 30GeV
- Muon channel
 Isolated muon(p_T > 20 GeV)
 Missing E_T > 20 GeV
 W transverse mass + Missing E_T > 60 GeV
- At least 4 jets($p_T > 20$ GeV)
- At least 1 jet b-tagged

Binning Optimization

Migration Matrix

Resolution