

LHC-ATLAS実験における 1レプトンモードでの超対称性粒子の探索

<u>佐々木雄一</u>、 片岡洋介^A、金谷奈央子^A、浅井祥仁

東京大、東大素セ^A April 24, 2012

• 強い相互作用で生成される超対称性粒子

以上のようなトポロジーを対象にして探索をおこなう。

主なバックグラウンド:

W	・ W-> lv 崩壊によるLeptonとE ^{miss}
tt	 tt->bblvqq崩壊によるLeptonとE^{miss} tt->bblvlv崩壊のうち、一方のLeptonが検出されない場合
(QCD)	 Multi-jet事象において、JetをLeptonと誤認した場合 (Signal Regionにはほとんど残らない)

その他: Z, Single Top, Diboson

使用データ:
 2011年末までに取得した4.7fb⁻¹のデータ。
 1Electron(p₇^{lep}>20GeV;) / 1Muon(p₇^{lep}>18GeV) trigger。
 解析ではそれぞれp₇^{lep}>25GeV / p₇^{lep}>20GeVを要求。

- MCを使用するが形状の不定性が大きい → データを用いて制限を掛ける。
- $p_{\tau}^{W/Z, truth}$ でMCサンプルを分割 \rightarrow データの $p_{\tau}^{W/Z}$ に対してフィット。
- Generatorの不定性を減らせる(20%->10%)

3Jets Signal Regionでの事象数とm_{eff}分布。

Electron ch. Expected Observed + Muon ch. W Total tt 3.0 ± 1.7 0.8 ± 0.5 4.7 ± 2.3 3 $m_{eff} = E_T^{miss} + p_T^{lep} + \Sigma p_T^{Jet}$ $m_0 = 260, m_{1/2} = 360$ Electron channel Muon channel Signal Region Signal Region 102 10² ATLAS Work in progress 4.7 ATLAS Work in progress 4.7 mSugra(260,360 nSugra(260.360 3Jets SR 3Jets SR QCD QCD W+jets W+iets 10 10 Single for Single top Dibosons Events Events) = 0 / 0.0 (Data / MC) = (MC) 10 10 10⁻² 10 Data/MC Data/MC 1.5 1.5 0.5 0.5 0[.] 0 2400 200 800 1000 2200 600 1000 1200 1400 1600 2000 2200 2400 400 600 1200 1400 1600 1800 2000 200 400 800 1800 M_{eff}(GeV) M_{eff}(GeV)

(統計+系統誤差。Totalにはその他Bkg.も含む)

4Jets Signal Regionでの事象数とm_{eff}分布。

(統計+系統誤差。Totalにはその他Bkg.も含む)

March 24, 2012

標準理論事象として解釈するとW+jets。

広い質量範囲で超対称性粒子への感度を保つため、 m_{eff}(~超対称性粒子の質量)をbin分けして、後にCombineする。

→棄却パラメータ領域の拡大

<u>3Jets Signal Regionで見たbin分けの効果</u>

- 2011年末までに取得したvs=7TeV、L=4.7fb⁻¹のデータを用いて 超対称性粒子探索を行った。
- 多数のJetと大きなE_T^{miss}に加えて、1本のLeptonを要求するトポロジーを ターゲットとした。
- Signal Regionの最適化を行い、以前よりも積極的に感度を向上させた。
- p_T^wやm_{eff}の分布形状の情報を用いることで、系統誤差の減少・感度領域の拡大を目指した。
- m(~q) = 1.2TeV, m(~g) = 0.8TeVまでの領域を棄却。

Backup

March 24, 2012

超対称性粒子の生成過程

縦軸:生成割合

Muonとして認識された内の割合

縦軸:プロセスの割合 横軸:m₀(GeV) 縦軸:m_{1/2}(GeV)

mSugra(tan β =10, A₀=0GeV, μ >0)

$$L = \frac{nf(I_1I_2)}{2\pi\Sigma_r\Sigma_v}$$

を用いてLuminosityを求める。 I₁,I₂:ビーム電流から計算した Bunch中の陽子数 Σ_x, Σ_y:ビームの幅(Van der Merrス キャン)

 $L = \frac{\mu n f}{\sigma}$ を用いてLuminosityを求める。 f:LHCの周回周波数(11kHz) n:Bunch数 μ :Bunch当たりの非弾性衝突数 (LUCID)から求める。

σ:非弾性散乱断面積

ビーム電流の取得

DCCT : ビーム電流をコイルで読み出す。 キャリブレーション不定性3% →これがLuminosity不定性(3.7%)の主要因。

AlpgenとMC@NLOを比較。

 $p_T^{Jet}=(>100,>25,>25,<80)GeV$ $m_{eff} > 400GeV$ $E_T^{miss} > 30GeV$ $E_T^{miss}/m_{eff}(3jets) > 0.3$

$$p_T^{Jet}=(>100,>25,>25,<80)GeV$$

 $m_{eff} > 400GeV$
 $E_T^{miss} > 30GeV$
 $E_T^{miss}/m_{eff}(3jets) > 0.3$

質量差の効果→p₇<50GeVの領域に限られる。 それ以上の領域では差は見えない。

