24pFA 9

LHC-ATLAS実験におけるボトムジェット を用いたスカラートップクォークの探索

山中隆志、金谷奈央子^A、浅井祥仁、駒宮幸男 東大理、東大ICEPP^A

日本物理学会 第67回年次大会 2012年3月24日

Introduction

- 超対称性理論はTeVスケールの物理を記述する有力なモデルの一つ
- 中でもscalar top quark (\tilde{t}) は湯川結合が大きいため他の超 対称性粒子に比べて軽いと期待される
 - さらにHiggs粒子質量へのRadiative correctionから"Natural"な parameterを考えると、 \tilde{t} の質量は数100 GeV/c²程度
 - Higgs質量の"Naturalness"からはhiggsino (\tilde{H})の質量 μ も数100 GeV/c² であるとされる

"Naturalness"から要請される最小限のモデルは軽い \widetilde{t} と軽い \widetilde{H}

本講演ではLHC-ATLAS実験で2011年夏までに取得された2.05 fb⁻¹のデータを 用いて行った \tilde{t}_1 対生成事象探索について述べる

Signature

- ここでは $m(\tilde{t}_1) > \mu$ の場合を考える
- higgsino-like neutralino LSPの場合

 $\widetilde{\chi}_1^+ \rightarrow \widetilde{\chi}_1^0 + f + f'$

質量が縮退 softなため検出されない

• gravitino LSPの場合

 $\widetilde{t_1} \rightarrow b + \widetilde{\chi}_1^+$

 $\widetilde{t_1} \rightarrow b + \widetilde{\chi}_1^+$

 $\widetilde{\chi}_1^0 \rightarrow Z / h + \widetilde{G}$

ATLAS Collaboration, arXiv:1112.3832 [hep-ex] 終状態は2b-jet + missing

= sbottom pair productionと同じ 最大で $m(\tilde{b}_1) < 400$ GeV をexclude

終状態は2b-jet+2Z/h + missing = Z→IIが良いsignature M. Asano et. al., JHEP 12 (2010) 019

本講演ではこちらのtopologyの探索について述べる

Event Selection (1)

- single lepton trigger
 - electron $p_T > 25$ GeV, muon $p_T > 20$ GeV
- opposite sign, same-flavor (e⁺e⁻ or μ⁺μ⁻)
 2-lepton
 - electron $p_T > 20$ GeV, muon $p_T > 10$ GeV
- 2-lepton invariant mass: 86 GeV < m_{||} < 96 GeV
- 2-jet with $p_{T} > 60 \text{GeV}$, 50 GeV
- at least 1 *b*-tagged jet (p_T >50 GeV)
- transverse missing energy: E_T^{miss} > 50 GeV or 80 GeV

Event Selection (2)

ee, µµ channelsの和のデータ及び標準模型の予測+Reference signalの分布 (系誤誤差を示す)

Background Estimation

 主要なバックグラウンドであるtop events(*tt*, single top, *tt+bb*, *tt+W*)はinclusiveにm_n side band control region (CR)からsignal region (SR)のevent数を推定

 2番目に大きな寄与をするZ+heavy-flavor-quark jets eventsについてはpureな control regionが取れないことからMC simulationと理論計算の断面積で推定
 jetがleptonにfakeするeventはdata-drivenに推定

Result and Uncertainties

Event selection後の*ee*, *µµ* channelの 和のデータと標準模型バックグラウンド の推定値(系統誤差も示す)

E _T ^{miss}	> 50 GeV	> 80 GeV	
Data	86	43	
Background	92±19	40.7±6.0	
top	64.3±7.7	34.8±5.0	
Z+jets	24 ± 16	4.2 ± 3.2	
fake-lepton	2.4 ± 0.9	1.1 ± 0.6	
others	1.2 ± 1.2	0.6 ± 0.6	
$\widetilde{t_1}, \widetilde{\chi}_1^0$ (290,190)	45±8	35±6	

標準模型からの有意な excess は 見られない。

標準模型バックグラウンドの系統誤差

- Top backgrounds (*tt*, single top, *tt*+*W*, *tt*+*bb*)
 - Jet energy scale uncertainty < ~ 5%
 - *b*-tagging uncertainty < ~ 3%
 - ISR/FSR (using AcerMC-PYTHIA) ~ 12%
 - Shower modeling (HERWIG or PYTHIA) < 5%
 - Generator (MC@NLO or POWHEG) ~ 3%
 - Z+jets backgrounds
 - Jet energy scale uncertainty ~ 30%
 - *b*-tagging uncertainty ~ 20%
 - Heavy flavor Cross-section 55%
 - parton matching (ALPGEN) ~ 40%
- fake-lepton events
 - サンプルの統計誤差が主 ~50%

SUSY Candidate Event

最も大きなE^{miss}を持つevent

				d[rad]	
	EXPERIMENT Run Number: 182787, Event Number: 12895389 Date: 2011-05-29 11:47:38 CEST			φ[iau]	
		1st jet	128	-2.35	
		2nd jet	114	2.91	
		3rd jet	66	-2.32	<i>b</i> -tag
	20 ET (0 YY) 10	4th jet	59	2.83	
		5th jet	46	-1.46	<i>b</i> -tag
		6th jet	35	1.85	
		1st <i>e</i>	54	-1.33	
		2nd <i>e</i>	28	0.27	
		E _T ^{miss}	301	0.51	
				<i>m_{ee}</i> =93.	5 GeV
		標準模型バックグランド内では <i>tt</i> と			
		consistent			8

Exclusion Limits

• $m(\tilde{\chi}_1^0) = 190 \text{ GeV} のとき、 <math>m(\tilde{t}_1) < 330 \text{ GeV}$ をexclude

結論

- *i* はHiggs粒子質量の"Naturalness"から特に軽いと
 される
- "Natural"なSUSY modelから期待される ²/₁ 対生成事 象の探索をLHC-ATLAS実験で取得された2.05 fb⁻¹の pp衝突データを用いて行った

- 標準模型からの予測からの有意なずれは見られなかった

• この結果、最大で $m(\tilde{t}_1) < 330 \text{ GeV} \text{ if } m(\tilde{\chi}_1^0) = 190 \text{ GeV}$ の場合にexcludeされた