LHC-ATLAS実験におけるグルイーノ対生成過程を 用いた長寿命荷電超対称性粒子の探索 (AMSBチャージーノ)

日本物理学会2012年秋年次大会 関西学院大学

<u>東裕也 (東大理)</u>

風間慎吾(東大理)
 山本真平(東大素セ)
 陣内修(東エ大)
 浅井祥仁(東大理)
 小林富雄(東大素セ)

1

超対称性から期待される長寿命荷電粒子

Anomaly Mediated Supersymmetry Braking (AMSB)モデル

- gauginoの質量比

- * m(bino) : m(wino) : m(gluino) ~ 3:1:7 → winoが最も軽いgaugino
- * NLSP(chargino), LSP(neutralino)の 成分が主にwinoとなる
- * charginoとneutralinoの質量が縮退し、 長寿命となる(AM~200MeV)
- * ATLASでも飛跡の観測が期待される
- gluino 対生成過程
 - $\tilde{g}\tilde{g} \rightarrow q\bar{q}'\tilde{\chi}_1^- q\bar{q}'\tilde{\chi}_1^-$
- * gluinoの崩壊から多数のjetがでる。
- * gluinoの崩壊からのcharginoは高い 運動量をもつ。
- * neutralinoが大きなmissing E_Tを作る。

gaugino対生成過程の解析については次講演(24pFA-4:風間)

ATLASの内部飛跡検出器

ATLAS検出器は3つの検出器から構成

- Pixel検出器 pixel センサーのモジュールが3層配置 される
- 2. Semiconductor Tracker (SCT)

2枚のストリップ状のセンサーを重ね 合わせたもので構成されるsilicon 検出器で4層配置される

3. Transition Radiation Tracker (TRT)

多数のdrift tubeからなる連続飛跡 検出器であり、遷移輻射を用いて電子の 粒子同定にも用いられる。

大きく3つのモジュールで構成され、内側 から19,24,30のdrift tubeの層からなる

連続飛跡検出器をもつのはATLASの 大きな特徴である

イベントセレクション

- 探索に用いたデータ
 - 積算 Luminosity = 4.7 fb⁻¹
 - トリガー: Jet > 75GeVかつmissing E_T > 55GeV
- イベントセレクション 1) missing $E_T > 130 \text{GeV}$ 2) 1st Jet $p_T > 130 \text{GeV}$ && 2nd/3rd Jet $p_T > 60 \text{GeV}$ 3) Leading track $p_T > 10 \text{GeV}$ 4) N^{outer}_{TRT} < 5

大きなmissingET及びJetを要求 したeventの中でchargino track を探索する

• Data reduction 及び

signal efficiency (chargino mass=90GeV)

Selection	Data	Signal Efficiency[%]
Missing ET >130GeV	321412	66.5
1st Jet pT > 130GeV && 2ns/3rd Jet pT >60GeV	73433	64.9
Isolated leading track pT > 10GeV	8458	24.8
N ^{outer} TRT<5	304	6.1

バックグラウンド

バックグラウンド評価のために

これらバックグラウンドをリッチにしたサンプル(コントロールサンプル)を作る

Interacting hadron track

- TRT内部でhadron interactionを起こした、hadron track.
- Calorimeter/こactivityをつくる
- コントロールサンプル: Calorimeter activity, さらにTRTを突き抜けたことを要求。

Badly reconstructed track

- 内部飛跡検出器の物質で散乱し、間違って高い運動量を持っているものとして再構成された track。
- Calorimeterにactivityがほぼない.
- コントロールサンプル: Calorimeter 無し、missing E_T<100GeVを要求

materialの効果、さらにbadly reconstructed trackの影響を正しく評価するために backgroundの見積もりは全て実データを用いて行う。

バックグラウンド及びsignalの評価(1)

バックグラウンド及びsignalの評価(2)

- * Hadron track 及びbad track分布は 急激に落ちる
- * Chargino trackの分布は非常に高い 運動量をもつ
- * Signal normalization およびバックグラ ウンドの形状について系統誤差を考慮し fitを行った
 - + Signal normalizationの系統誤差
 - dominantなsourceとしてsignal cross-sectionのuncertainty
 - 全体として28%を計上
- * 結果 (90GeV chargino signal)
- 0 signal event と consistent な結果
- バックグラウンドのみのfitともconsistent な結果が得られた

	Signal + BG	BG only
Signal Strength	< 0.048	
Number of background	303.9 ± 16.7	304.0 ± 16.9
P-value of null hypothesis		0.50

4.7fb⁻¹での探索において、 有意なexcessは見られなかった。

AMSB modelに対する制限

4.7fb⁻¹での探索において、AMSB モデルに対する制限が得られた

AMSB シグナルMC

- 1) chargino mass = 90GeV, cross-section= 6.8×10^{-2} pb
- 2) chargino mass = 118GeV, cross-section= 8.7×10^{-3} pb

90GeV chargino model:寿命が0.2~90nsの範囲で棄却 (95%C.L.) 118GeV chargino model:寿命が1~2nsの範囲で棄却 (95%C.L.)

AMSB charginoの質量と寿命における制限

Chargino探索において最高の感度に 達し,質量118GeVまでのcharginoを棄却 した (これまでの制限はLEP2における探索の,chargino 質量<92GeV) まとめ

- ATLAS検出器で取得された重心系エネルギー7TeV,積算ルミノシティ
 4.7fb⁻¹のデータで、超対称性模型から予言される長寿命荷電粒子の探索を行った
- AMSBモデルにおいては長寿命のcharginoがあり、その信号の観測がATLAS 検出器においても期待される
- 長寿命のcharginoは高い運動量を持ったトラックが、途中で消失したような 特徴的な信号をつくる
- •探索の結果、有意なexcessは見られなかった
- AMSB modelにおける制限
 - 90GeV chargino model:寿命が0.2~90nsの範囲で棄却 118GeV chargino model:寿命が1~2nsの範囲で棄却
- Chargino の質量と寿命における制限

118GeVまでの質量のcharginoを寿命が1~2nsの範囲で棄却 chargino探索においてこれまでで最高感度の結果が得られた。

- References
 - ATLAS Collaboration, "Search for long-lived charginos in anomaly-mediated supersymmetry breaking scenarios with the ATLAS detector using 4.7 fb⁻¹ data of pp collisions at ¥sqrt(s)=7TeV", ATLAS-CONF-2012-034, CERN, 2012

backup

コントロールサンプルの抽出 -セレクションのまとめ-

	Hadron interaction	Badly reconstructed		
Kinematic selection				
Missing Et	Missing $E_T > 130 \text{ GeV}$	Missing $E_T < 100 \text{ GeV}$		
Jet Pt	1st Jet p _T > 130GeV			
	3rd Jet p _T > 60GeV			
Track selection				
N _{pixel}	>= 1	== 0		
N _{TRT3}	> 10	< 5		
付随するカロリーメータ	あり	なし		
アクティビティ	$(\Sigma_{\Delta R<0.1}E_T^{clus}/p_T^{track}>0.3)$	$(\Sigma_{\Delta R<0.1}E_T^{clus}/p_T^{track}<0.3)$		

- * Hadron interaction のtrackは, jet 中のtrack及び hadronic decayを起こしたtauが 起源なので、track pt分布はkinematicに依存する。そのため、同じkinematic selectionを要求した
- * Badly reconstructed trackはkinematicに依存しないので、Missing E_T < 100GeVを 要求し,jetのみのtriggerで取得されたsampleを用いた

unbinned maximum liklihood法

$$\mathcal{L}(\mu, n_{b}, f_{bad}, \alpha, \vec{\beta}_{bad}, \vec{\beta}_{had}) = \prod_{\substack{n_{obs} \\ m_{obs} \\ m_{ob$$

signal及びBGのpdf uncertainty on signal normalization covariance of BG shape unbinned ML法で用いたパラメータは以下の通り

μ	the signal strength	
n _{obs}	the observed number of events	
n ^{exp} s	the expected number of signal events for a given model	
n _b	the number of background	
L	the integrated luminosity	
σ_{s}	the signal cross section	
ε _s	the signal selection efficiency	
f _{bad}	the fraction of bad track In the background	
α	the nuisance parameters representing the signal normalization	
β_{had}	the nuisance parameters representing the pT spectrum of the hadron track	
β_{bad}	the nuisance parameters representing the pT spectrum of the bad track	

系統誤差

計上した系統誤差は以下の通り。

	source	uncertainty
signal	Jet energy scale	+/- 2.8%
	Track reconstruction efficiency	+/- 2%
	Theoretical cross section	+/- 27.2%
	Pile-up modeling	+/-0.5%
	Trigger efficiency	+/-2.3%
	Luminosity	+/- 3.9%
background	Background shape	shapeの不定性としてfitの parameterのエラーを計上

- Theoretical cross-section から来る系統誤差がdominant。
- Signal cross-sectionに対する系統誤差、及びBackground shapeの系統誤差を 考慮して、fittingを行う。