LHC-ATLAS実験における H→ZZ(*)→4lを用いたHiggs粒子の探索

崔原碩、田中純一个、中村浩二个、浅井祥仁

東大理、東大素セム

日本物理学会 2012年 第67回年次大会 @ 関西学院大学

$H \rightarrow ZZ(*) \rightarrow 41$ channel

- H→ZZ(*)→4|
 - 4つのleptonを要求。
 → low BG
 - Hの探索が出来る範囲が広い
 - →存在すれば、Golden channel
- Higgsの探索範囲:110 < m_H < 600 GeV
 - *m_H* > 180*GeV*の範囲では、on-shellのZ 二つに崩壊
 →BGが suppressされる。
 - $m_H < 180 GeV$ の範囲では、一つが off-shellのZになる → Z bb, ttbar, Z+jet などの BGが存在
- 統計が少ないのが問題。一方Pileupが多く、leptonの isolation 条件によるlossが深刻
- 本講演では、2011年のデータに適用し、low mass 領域に置いての既存の 方法(2月のpaper, arXiv:1202.1415)に比べてacceptanceを上げる方法を 発表する。

- Low mass regionでは, reducible BGの mainは Zbb+jets。
 - → bからのleptonはisolationが悪い
 - → tightな isolationを要求して排除(既存のcut)。
- bからの lepton は track が vertex からずれる。
 - \rightarrow vertex fit の quality が落ちる。
 - → isolation などによるcutをlooseに、fitの X²/NDF を用いて Zbb+jets, ttbar からの BGの排除、及び signal の増加を試す。
- 本研究では、H→ZZ(*)→4µを使って解析を行った。

Used samples

- Data
 o Data of 4.8 fb⁻¹ is used
- Signal sample • ggF: gg \rightarrow H(130GeV) \rightarrow ZZ \rightarrow 4I (I=e, μ,τ), PowHeg, 5.89fb
- BG sample
 - Zbb sample : Zbb + jets, Z->II (m(II)>30GeV) (I=e,μ), Alpgen , 24pb
 - ZZ sample : ZZ→4I (I=e,μ,τ), PYTHIA , 0.058 pb
 - o ttbar:

ttbar, MC@NLO, 164.57 pb

Pull & χ^2 /NDF distribution

Vertex の fit に使われる変数の errorの評価が正しくされているかを確認
 → Pull ((rec_par - truth_par)/rec_par_err) will follow to (0,1)Gaussian

4つの muonの4元運動量からtrackをfitすることにより、vertex を再構築。

Zbbのfit qualityの方が断然悪い ttbarも同様。

→理想の結果: signalの増加、既存の方法と同程度以上 のBGの抑制

5

Optimization of χ^2 /NDF Cut

研究の目的: acceptanceを増やす

→Fit quality (X²/NDF) cut 後の significanceが最大になるように optimize (Zbb, ZZ, Signal (H=130GeV) are used)

• Significance (S)は125~135GeVの間で計算

$$S = \sqrt{2\left(\left(s+b\right)\ln\left(1+\frac{s}{b}\right) - s\right)}$$

mass resolution (4μ) : 2GeV @130 GeV

Both type1 &2 cut's max S point is at χ^2 /NDF cut =2.6 (this plot is using type2)

4μ Selection Cut flow

- ・新しいcutでは Isolation cutを緩く、d0cutを排除
 - $\circ\,$ Type1: apply loose isolation cut (x2 from official) to 4 μ
 - $\circ\,$ Type2: apply 1) 's isolation cut to only 2 μs of secondary Z

Mass(4µ) distribution of MC

Significance, nSig, nBG are calculated between 125~135 GeV

χ^2 /NDF distribution including Data

	Data	Signal	Sig err (stat)	BG	BG err (stat)
Standard (after d0 cut)	26	0.8756	+/- 0.022	19.73	+/- 0.12
Type1 (after chi cut)	25	0.8934	+/- 0.022	19.39	+/- 0.12
Type2 (after chi cut)	30	0.8972	+/- 0.023	19.59	+/- 0.13

Mass(4µ) distribution including data (4.8fb⁻¹)

Summary & Plan

 H→ZZ^(*)→4µ channelを使って、既存の方法より acceptanceを 上げる目的で、2通りの loose isolationを採用、Impact parameter のcut を排除。

BGを落とすために vertex fitの quality(2/NDF) を用いた。

- Significance でcutの値をoptimize、type2の loose cut では Higgs candidateの数も増加
- 今後は他の loose isolation、4eや2e2µのchannelでの効果などを試す。

Back up

Backgrounds of $H \rightarrow ZZ(*) \rightarrow 41$ Channel

Remained event number of MC

	Cut type	Before isolation	Isolation	Fit Quality (d0)
Signal	standard		1699	1676
	type1	1812	1774	1714
	type2		1783	1722
Zbb	standard		427	161
	type1	5582	895	146
	type2		1193	182
ZZ	standard		39171	38905
	type1	40949	40169	38226
	type2		40324	38367
ttbar	standard		2	0
	type1	322	10	0
	type2		47	3