LHC-ATLAS実験における 二光子に崩壊するヒッグス粒子の探索(1)

山村 大樹,田中 純一,山口 洋平^A 增渕 達也,中村 浩二,浅井 祥仁^A 東大素セ,東大理^A

Outline

LHC-ATLAS実験におけるH→γγ事象の探索

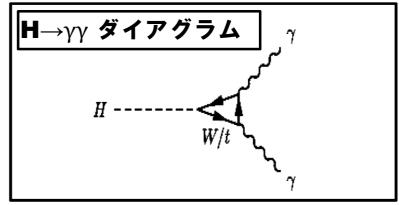
2011年のfull dataset(4.9fb⁻¹)を用いた解析結果

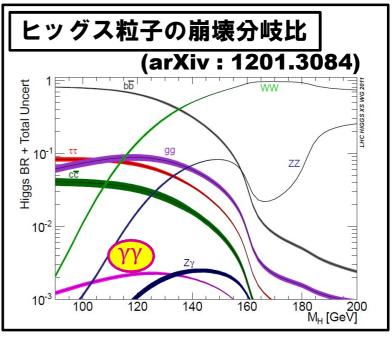
- ◆ イントロダクション
- **♦ Event selection & categorization**
- ◆ 解析結果
 - BG study
 - · Signal modeling
 - ・系統誤差
 - ・H→γγ 探索の最終結果
- ◆ まとめ/ 今後の展望

References

2011年のfull dataset(4.9fb⁻¹)を用いた解析結果

♦ Publication: PRL 108, 111803

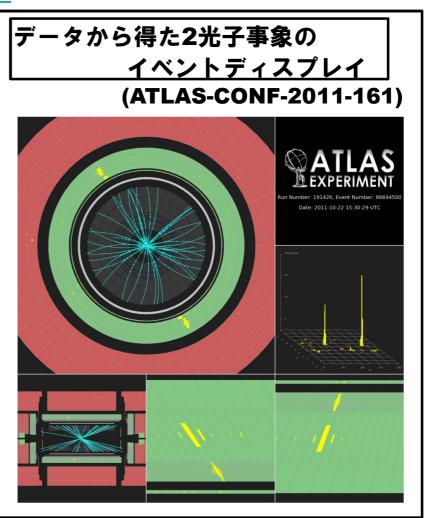

(arXiv: 1202.1414)

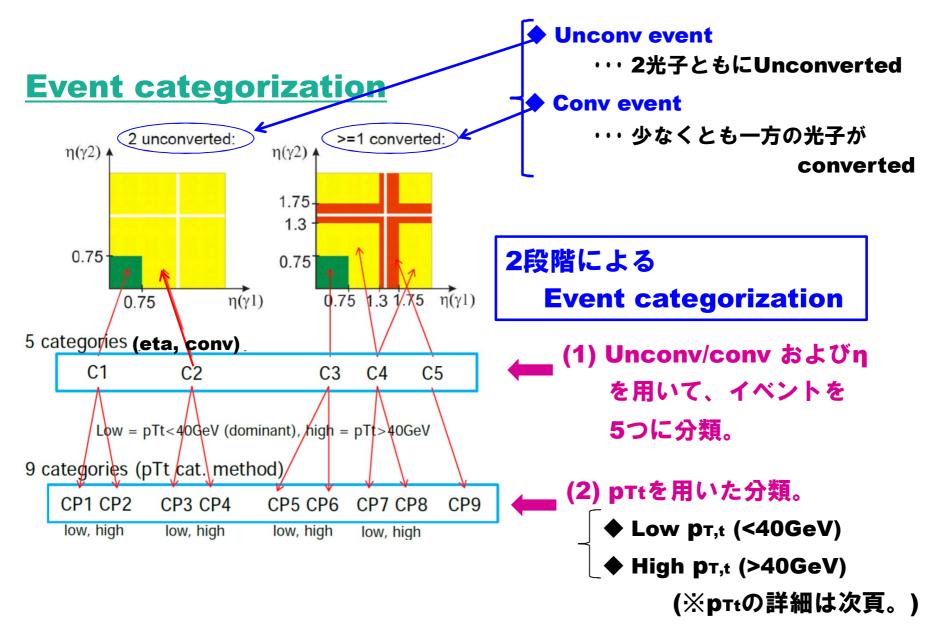

◆ Conf note: ATLAS-CONF-2011-161

(https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/)

H→yy 探索の概要

- ◆ H→γγの特徴
 - ・崩壊分岐比は、0.1-0.2%程度と小さい。
 - ・高横運動量の光子を2つ持つ事象であるため、 選択効率が良い。
 - ・特に m_H=110-130GeV領域における sensitivityが高い。
- ◆ 背景事象 (background)
 - ・Irreducible (SMプロセスからくる γγ事象) ・・・・ Main contribution
 - · Reducible · · · γ +jets, di-jet
 - ・Drell-Yan (Z→ee)・・・ Contributionは非常に小さい。

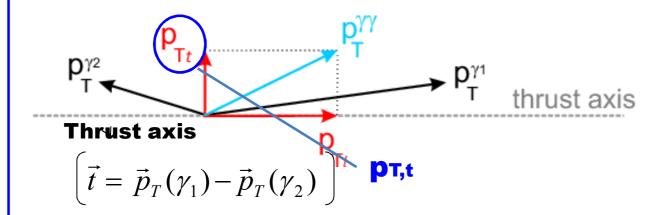




Event selection & categorization

- Event selection :
 - 2つの高横運動量の光子の存在を要求。 (Eτ(γ1,γ2)>40, 25GeV)
 - [∕]・2光子トリガー (E⊤>20GeV)
 - ・光子のセレクション
 - $\sqrt{|\eta|}$ <1.37 or 1.52< $|\eta|$ <2.37
 - \checkmark E_T(γ1,γ2)>40, 25GeV
 - √ photon-ID
 - ✓ Isolation-cut
- Event categorization :
 - Significanceを上げるべく、 イベントを9つに分類する。

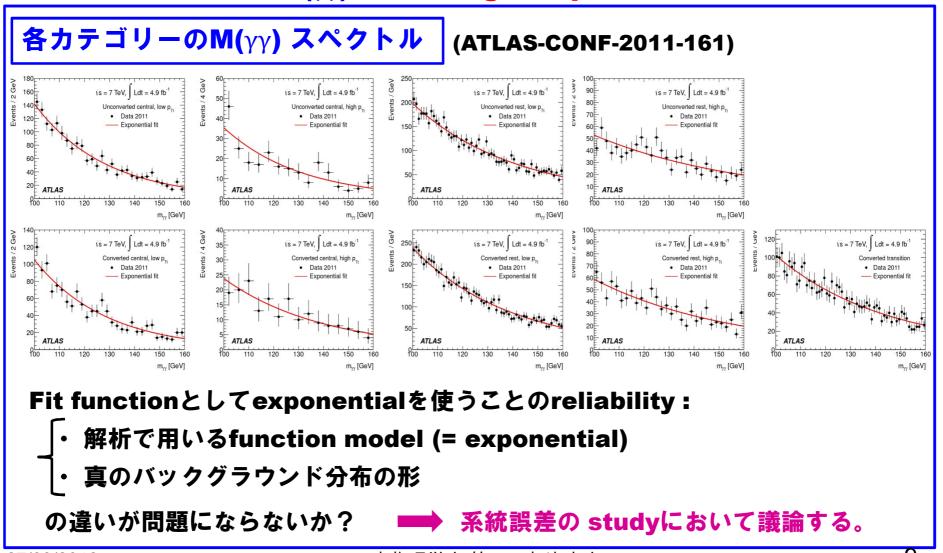
(→次頁)


S/B および シグナルのmass resolutionに応じた分類を行っている。

рт,t の定義 (рт,t = "рт-thrust")

・"Thrust axis" を定義: $\vec{t} = \vec{p}_T(\gamma_1) - \vec{p}_T(\gamma_2)$

・Thrust axisを基準としたpτ(γγ)の横成分を рт,t ("рт-thrust") と定義する。



• ptt has more discriminative power than pt($\gamma\gamma$).

解析結果

BG modeling

100-160GeV領域の $M(\gamma\gamma)$ 分布を single-exponential でfitする。

(※ Inclusiveの場合についてのみstudy。)

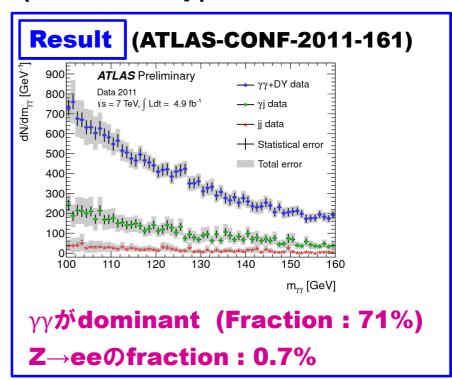
各BG成分の理解 (data-driven)

最終結果には全く使わないが、reducible BGが十分抑えられているか等を

♦ γγ/ γ**+jet** / **di-jet** :

Checkできる。

2光子のPhoton-ID変数およびIsolation変数に関する "anti-cut"領域を control regionとして用いることで、γγ/γ+jet/di-jetの各成分に Data-drivenで分解することができる。 (詳細はbackup)


♦ DY(Z→ee)

"eγ**事象"**をcontrol sampleとする。

(Z→eeの一方のelectronが γにfakeしたイベント)

e→γのfake rateをapplyすることで、 γγセレクト後に残る Z→ee事象の contributionを評価できる。

Signal modeling

♦ Signal shape

"Crystal-ball (CB) + Gaussian" でのmodeling。

カテゴリーごとのシグナルピーク幅 およびシグナル事象数 (for mн=120GeV)

(arXiv: 1202.1414)

Category	$\sigma_{\rm CB}$	FWHM	Ns	N_{D}
Unconverted central, low p_{Tt}	1.4	3.4	9.1	1763
Unconverted central, high p_{Tt}	1.4	3.3	2.6	235
Unconverted rest, low p_{Tt}	1.7	4.0	17.7	6234
Unconverted rest, high p_{Tt}	1.6	3.9	4.7	1006
Converted central, low p_{Tt}	1.6	3.9	6.0	1318
Converted central, high prt	1.5	3.6	1.7	184
Converted rest, low p_{Tt}	2.0	4.7	17.0	7311
Converted rest, high p_{Tt}	1.9	4.5	4.8	1072
Converted transition	2.3	5.9	8.5	3366
All categories	1.7	4.1	72.1	22489

· Unconv event :

ピーク幅がnarrow。

0.08 ATLAS

0.07

0.05

0.04

0.03

0.02

0.01

(Simulation)

m_⊔ = 120 GeV

→ significanceが良い領域。

期待されるシグナルピーク

(PRL 108, 111803)

 $\sigma_{CR} = 1.7 \text{ GeV}$

inclusive

FWHM = 4.1 GeV

(m_H=120Ge**V**)

m_w [GeV]

· Conv event

ピーク幅のη依存性が大きい。

→ unconv eventに比べて、 より細かいη-binに区切ることで、 significanceの向上が

110 115 120 125 130

もたらされる。

・σcB, FWHM: シグナルピークの幅

·Ns: シグナル事象数

・Nρ: データから決定したBG事象数 (100<M(γγ)<160GeV)ノ

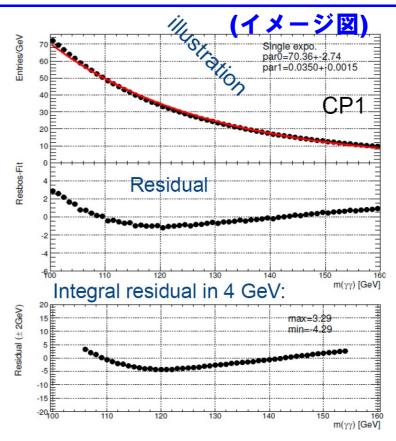
11

系統誤差

- (a) Signal yield: +20%/-17%
 - ◆ 主なerror sources
 - · Theory : ∼ +15%/-11%
 - ┤・Photon-IDのefficiencyの不定性: ±11%
 - │・Isolationセレクションのefficiencyの不定性: ±5%
- (b) シグナルピーク幅の不定性: ±14%
 - ◆ 主なerror: calolimeter energy resolutionの不定性 (±12%)
- (c) カテゴリー間のmigration (シグナル事象のmigration)
 - ♦ low⇔high pτt 間

 ∠Nsig = ±8% (for high pτt-bin)
 - ♦ unconv⇔conv 間

```
\angleN<sub>sig</sub> = \pm4.5% (for unconv-bin)
```


(d) BG modeling

- ・M(γγ)分布の解析で用いる関数モデル (= exponential)
- し・真のバックグラウンド分布の形 が有する違い(residual)について考える。

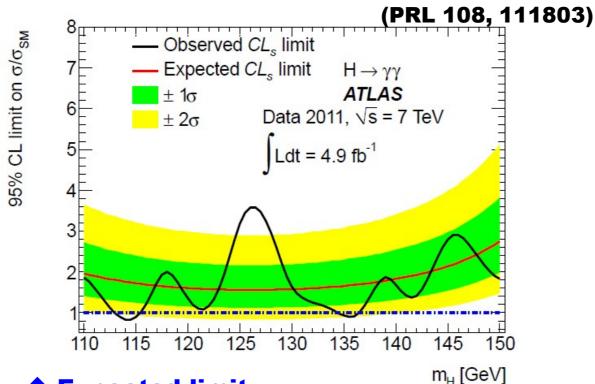
MCを用いた考察

- ◆ RESBOSを使用。 (γγ プロセスの Parton-level generator)
- ◆ M(γγ)=110-150GeVの探索領域に おける residualをcheckする。 (幅4GeVのmass windowをスライド して、Integral residualをcheck。)

幅4GeV(±2GeV)のmass window をスライドさせて得られたresidual

・110-150GeVの領域で得られた最も大きいIntegral residual:

BG modelingに起因するシグナル事象数の不定性と定義している。


・不定性の評価結果: ⊿Nsig = 0.1-7.9 events (カテゴリーごとに定義。)

(e) Energy scaleの不定性

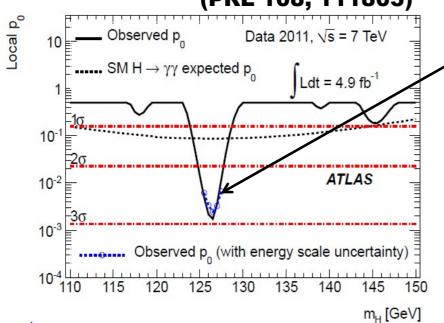
$H \rightarrow \gamma \gamma$ 探索結果

Exclusion limit w.r.t SM prediction

(95%C.L.) (w/ CLs)

♦ Expected limit

$$(1.6-2.7)\times SM @ m_{H} = 110-150GeV$$


♦ Observed exclusion

 $H \rightarrow \gamma \gamma$ 探索結果

p₀-value

※LEE(Look-Elsewhere-Effect)を 考慮に入れてない場合での結果。

(PRL 108, 111803)

観測された po値

・黒実線:

Energy scaleの不定性 を入れてない場合の結果

・ 青点線:

Energy scaleの不定性 を入れた場合の結果

Observed excess

探索領域(110-150GeV)内での最も大きなexcess: m_H~126.5GeVにおいて観測されている。

- LEEを考慮しない場合 : 2.8σ
- ・LEEを考慮した場合 : 1.5σ

Summary

LHC-ATLAS実験におけるH→γγ事象の探索

▶ 2011年のfull-dataset (4.9fb-1)を用いたH→γγ 探索

(探索領域: mн=110-150GeV)

- ▶ 生成断面積に対する上限値 (@95%C.L.)
 - Expected limit

```
(1.6-2.7)×SM (for 110-150GeV)
(1.6-1.7)×SM (for 115-130GeV)
```

Observed exclusion

◆ 探索領域(110-150GeV)内での最も大きなexcess:

```
m<sub>H</sub> ~126.5GeVにおいて観測されている。
```

LEEを考慮していない場合: 2.8σ LEEを考慮した場合: 1.5σ (デ (%LEE: Look-Elsewhere-Effect)

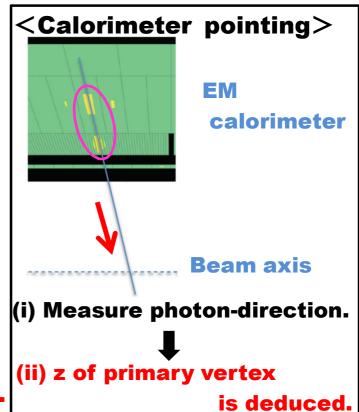
Η→γγ 今後の展望

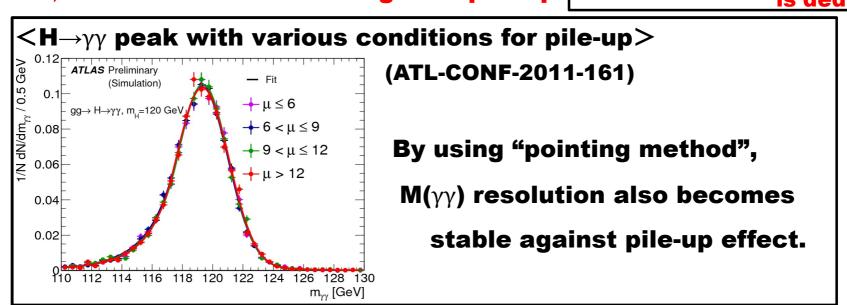
- ◆ Sensitivityの向上
 - ・Exclusive analysis (VBF-binの導入)
 - ・photon-ID: Cut-base → Neural net への移行。
 - MVA (Multi-Variate-Analysis)
- ◆ 2012 run at LHC
 - ・~15fb⁻¹ 程度のデータが取得できるみこみ。
 - ·√s: 8TeV (7TeVの場合に比べ、ヒッグスの生成断面積が30%up)
- ◆ 2012年の展望
 - Exclusion: ヒッグスがなければ、110<m_H <130GeVの全領域で可能。
 - 他のチャンネル(WW, ZZ, tautau etc.)やCMSとのcombination により、SMヒッグス粒子があるかないかについて何らかの答えが 出ることを大いに期待して、解析を進める。

Backup

Vertex reconstruction (z-vertex)

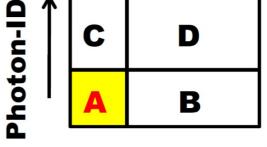
Vertex position is measured by "pointing method".


Unconverted photon :


"1st + 2nd layer of EM calorimeter"

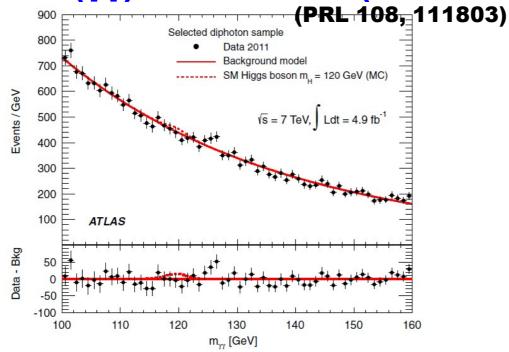
Converted photon :

"1st layer of EM calorimeter"


- + "conversion point (γ→ee)"
- Robust measurement against pile-up.

Data-driven BG decomposition

(for $\gamma\gamma$, γ +jets and di-jet)



· Using "ABCD" method (i.e. A=B*C/D), # of fake photons in "tight-isolated" region can be checked.

Isolation

This method is applied to 1st and 2nd photons iteratively.

M(γγ) distribution (inclusive)

◆ 系統誤差 (summary)

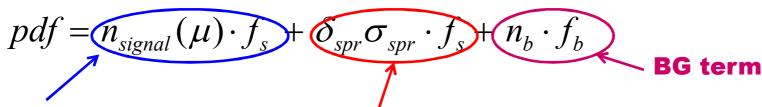
(a) Signal yield

- photon reconstruction & identification ±11%
- effect of pileup on photon identification $\pm 4\%$
- · isolation cut efficiency ±5%
- · trigger efficiency ±1%
- · Higgs boson x-sec (scales) +12%/-8%
- · Higgs boson x-sec (PDF+ α_s) $\pm 8\%$
- Higgs boson pt-modeling ±1%
- · Luminosity ±3.9%

(b) Signal mass resolution

- Calorimeter energy resolution ±12%
- Photon energy calibration $\pm 6\%$
- Effect of pileup on energy resolution $\pm 3\%$
- Photon angular resolution $\pm 1\%$

(c) Signal category migration


- Higgs boson pt-modeling ±8%
- · Conversion rate ±4.5%
- (d) BG modeling \pm (0.1-7.9) events

Limit calculation on H\rightarrow \gamma\gamma

◆ Profile likelihood ratio methodを用いる。

(CLsによるlimit setting。)

- Unbinned maximum likelihood fit is performed simultaneously in 9 categories.
 - BG parameters : free
 - ・ # of nuissance parameters = 32 (→ 次頁参照。)
- ◆ PDF for (S+B)-fit

Signal model

(Defined by MC)

Signal term which is produced by

the bias due to BG modeling.

(Spurious term)

List of nuissance parameters

- Exponential slope for each category: 9
- · Background normalization for each category: 9
- Spurious signal events: 9 categories, but 2 share pt and η categorization → 7
- migration between low pt and high pt → 1 for all (total anti-correlated)
- migration between unconverted-converted → 1 for all (total anti-correlated)

The following are correlated among 9 categories:

- Signal resolution
- Signal Acceptance (yield)
- Luminosity
- · Cross section (2)

$$\rightarrow 5$$

$$9+9+7+2+5=32$$