Inclusive Jet Cross Section Measurement at LHC-ATLAS experiment

Shima Shimizu,

Tancredi Carli, Bogdan Malaescu, Pavel Stravoitov, Toshi Sumida (CERN) and ATLAS collaboration

19/Sep/2011 JPS Autumn Meeting 19pSD-1

ATLAS experiment at LHC

- LHC : proton-proton collisions at $\sqrt{s} = 7 \text{ TeV}$
- ATLAS calorimeter

Inclusive Jet Cross Section

- Cross section of jet production
 - Probe for perturbative QCD in the large phase space
 - Sensitivity to parton distribution functions (PDFs)

- Measurement in ATLAS
 - Kinematic range
 - □ |y| < 4.4
 - 20 GeV $< p_T < 1.5$ TeV
 - High $p_T \rightarrow$ New region
 - Low $p_T \rightarrow Soft QCD$
 - High y \rightarrow high/low-x PDFs

Data sets

- 2010 collision data $\int L dt = 37 \text{pb}^{-1}$
 - Minimum bias trigger
 - Triggered by a hit on scintillators at end-cap.
 - For measurement at low $p_T (p_T \le 60 \text{ GeV})$
 - Collected at the very beginning of the data taking: L < 1nb⁻¹
 - Low instantaneous luminosity
 - Negligible pile up
 - Central and/or forward jet triggers
 - For measurement at medium high p_T

Jet Reconstruction

- Input: 3D topological cluster
 - Seeded by a calorimeter cell with $E > 4 \sigma_{noise}$
- anti-k_T algorithm
 - Cone-like shape
 → Good for calibration
 - Infrared and collinear safe
 → Comparison with NLO pQCD

Cacciari, Salam, Soyez: JHEP 0804:063, 2008

p [GeV]

anti-k, R=1

• R=0.4, 0.6

• Different contribution of non-perturbative effect.

Jet Energy Scale Uncertainties

- JES uncertainty is determined from;
 - Calorimeter response to single particles
 - test beam results
 - in-situ E/p response
 - Detector simulation variation
 - Event generator variation
 - In-situ intercalibration for $|\eta| > 0.8$ using dijet balance
- < 2.5% at the central region for $p_T \sim O(100)$ GeV
- 13% in the forward region.

← Dominated by modeling of soft physics. (Considered in intercalibration)

Jet Energy Scale Uncertainties - 2

- JES calibration is validated using in-situ methods.
 - photon-jet balances
 - multi-jet balance
 - Balance between the leading jet and the rest jets.

0<| *η* |<1.2

- comparison of calorimeter energy and track momentum.
- → Differences between data and MC are well within JES uncertainty.

Unfolding for detector effects

- Data distributions should be corrected for
 - Detector effect (resolutions, jet reconstruction inefficiencies)
 - Restoring to truth particle level (muon, neutrinos)
- Bin-by-bin correction was used.

$$C_i = \frac{N_{\text{reco.in i-bin}}}{N_{\text{true in i-bin}}}$$

- Requires good description of data by MC
 - Jet shape is reasonably well described even at 2.8<|y|<3.6.
 Jet shape in the central region; Phys. Rev. D83 052003, 2011
- → MC/Data difference is treated as source of systematic uncertainties.

Systematic Uncertainties

Following sources in the systematic uncertainties are considered.

- Jet energy scale
- Unfolding uncertainty
 - Jet energy resolution
 - Jet angular resolution
 - MC Shape

- Jet cleaning efficiency
- Trigger efficiency
- Jet reconstruction

ATLAS-CONF-2011-047

$p_{\rm T}$ [GeV]	y	Abs. JES	Unfolding	Cleaning	Trigger	Jet Rec.
20	2.1-2.8	$^{+40\%}_{-30\%}$	20%	0.5%	1%	2%
20	3.6-4.4	$^{+80\%}_{-50\%}$	20%	0.5%	1%	2%
100	< 0.3	10%	2%	0.5%	1%	1%

Table 1: Summary of systematic uncertainties on the inclusive jet cross section measurement for representative p_T and y regions for anti- k_t jets with R = 0.6.

Uncertainty of luminosity measurement: 3.4%

Theoretical predictions

- NLO pQCD prediction + Non-perturbative corrections
 - pQCD predictions

NLOJET++ (Calculated using APPLGRID)

Uncertainties: PDF uncertainties, $\alpha_{\rm S}$, $\mu_{\rm F}$, $\mu_{\rm R}$

- Non-perturbative effects
 - Hadronization effect
 - Underlying event

Correction factors from MC C

$$C = \frac{\sigma_{Had.ON,UE\,ON}}{\sigma_{Had.OFF,UE\,OFF}}$$

- Matrix element + Parton shower
 - NLO ME + PS :
 - PS + Hadronization + Underlying event:

PowHeg Pythia, Herwig

Measured cross sections

- The inclusive jet cross section is measured for 20 GeV $< p_T < 1.5$ TeV.
- The measurement proves perturbative QCD over 10 orders of magnitude in cross sections.

Comparison with several PDFs

anti-k, R=0.4

- Comparison of CTEQ6.6, MSTW2008, NNPDF2.1 and HERAPDF1.5, in ratios to theory prediction with CTEQ6.6.
- All of them are in good agreement with measured cross sections.

Comparison with PowHeg

- Comparison with predictions from NLO pQCD calculation and PowHeg calculations.
- PowHeg predictions are consistent with the measured cross section within uncertainties.

Towards 2011 measurements

ATLAS has collected

• $L = 250 \text{ nb}^{-1}$ data of sqrt(s)=2.76 TeV *pp* collision data.

 \rightarrow Ratio to 2010 measurement will give precise information on QCD.

• $L = 2 \text{ fb}^{-1} \text{ of sqrt}(s) = 7 \text{ TeV } pp \text{ collision data.}$

 \rightarrow Extending the measurement to the higher p_T region.

Dijet event with the two leading jets with (p_T, y) of (1.9 TeV, -0.2) and (1.7 TeV, 0.2)

Summary

Inclusive jet cross section has measured using ATLAS detector with full 2010 data of $L = 37 \text{pb}^{-1}$.

• The measurement covers the large kinematic region of $20 \text{ GeV} < p_T < 1.5 \text{ TeV}, |y| < 4.4$

Test of perturbative QCD in the TeV region.

 \rightarrow Good agreement with pQCD predictions is seen.

- Comparison with several PDFs.
- Comparison with NLO matrix elements + parton shower.

Would be a new input for PDF determination.

Backup

Comparison with several PDFs (R=0.6)

Comparison with PowHeg (R=0.6)

