LHC-ATLAS実験における長寿命荷電粒子の探索 日本物理学会2011年秋季大会 弘前大学文京町キャンパス

<u>東裕也 (東大理)</u> 山本真平(東大素セ) 陣内修(東エ大) 浅井祥仁(東大理) 小林富雄(東大素セ)

1

超対称性から期待される長寿命荷電粒子

- Anomaly Mediated Supersymmetry Braking (AMSB)モデル 超対称性の破れにおいて特別な機構を要求しないsimpleなmodel SUSYが存在すればAnomalyを介した超対称性の破れの機構は必ず起きる
- gauginoの質量比

m(bino) : m(wino) : m(gluino) ~ 3:1:7

→ winoが最も軽いgaugino

NLSP(chargino), LSP(neutralino)の成分が主にwinoとなる

• charginoの崩壊

$$\tilde{\chi_1}^{\pm} \to \tilde{\chi_1}^0 + \pi^{\pm}, e^{\pm}\nu$$

*charginoとneutralinoの質量が縮退し、崩壊時のπ/eがソフトになる *charginoの寿命が長くなり、ATLAS検出器でも観測が可能となる

- charginoの信号
 - * 長寿命のchargino→大きな運動量のtrack
 - * neutralinoとソフトなπ/eに崩壊

→ 途中からhitが無く、消失したかのような信号

AMSB事象のイベントトポロジー

signal

- m(chargino) = 90.2GeV
- gluino対生成 process
- * gluino崩壊時に多くのjetと charginoが生じる
- * cross-section = 0.062pb
- * lifetime: τ(chargino)=1ns
- a) chargino track
 - 高い運動量をもった,途中から 消失したかのようなtrack
- b) 大きなmissing E_T
 - neutralinoが大きなmissing E_T を作る
- c) 大きな運動量をもった多数のjet
 - gluinoの崩壊によって、大きな 運動量をもったjetが多数生じる

ATLASの内部飛跡検出器

ATLAS検出器は3つの検出器から構成

- Pixel検出器 pixel センサーのモジュールが3層配置 される
- 2. Semiconductor Tracker (SCT)

2枚のストリップ状のセンサーを重ね 合わせたもので構成されるsilicon 検出器で4層配置される

3. Transition Radiation Tracker (TRT)

多数のdrift tubeからなる連続飛跡 検出器であり、遷移輻射を用いて電子の 粒子同定にも用いられる。

大きく3つのモジュールで構成され、内側 から19,24,30のdrift tubeの層からなる

連続飛跡検出器をもつのはATLASの 大きな特徴である

charginoの検出方法

- chargino探索には連続飛跡検出器であるTRTを用いる TRT3種類のモジュールのうち、最も外側のモジュールでのtrackのhit数(N_{TRT3}) を計測すると、
 - 最外モジュールまでに崩壊したもの $\rightarrow N_{TRT3} \sim 0$
 - 最外モジュールを突き抜けたもの → N_{TRT3}~15

chargino track selectionにNTRT3 <5を要求する

データセット 及びイベントセレクション

<u>* データセット</u>	
トリガー : Jet p _T > 75GeV && 積算ルミノシティ : 1.02fb ⁻¹	Missing $E_T > 55 GeV$

- * イベントセレクション
- Primary Vertex Leading primary vertex with >4 tracks
- Lepton Veto

Number of electrons == 0 && Number of muons == 0

- Kinematic selections
 - Missing $E_{T} > 130 \text{ GeV}$
 - 1st leading Jet $p_T > 130 \text{ GeV} \&\& 2nd/3rd \text{ leading Jet } p_T > 60 \text{GeV}$
 - good isolated leading track (以下の条件を満たすtrackがあるイベントを要求)

р_т > 10GeV |η| < 0.63 (バレル領域のTRTを通過したtrackを選択) $|d_0| < 1.5$ mm, $|z_0 \sin(\theta)| < 1.5$ mm number of pixel hits >= 1, number of SCT hits >= 6number of tracks (dR < 0.05, p_T > 500 MeV) == 0 (isolationを要求) - chargino track selection ($N_{TRT3} < 5$) 6

isolated leading track

chargino selection (N_{TRT3}<5)後のtrackは主に3種類ある。

- 1) chargino signal
- 2) high-p_T hadron interaction track 検出器内でhadron interactionを起こしたtrack。多数の粒子がinteraction

によって生じ、TRTの最外モジュールのhit数が少なくなる。 バックグラウンドとしては 殆どが hadron interaction track

3) badly reconstructed track

low-p_Tのtrackが検出器内で散乱され、まれに間違ってhigh-p_Tのtrackとして再構成される。バックグラウンドの寄与の割合は小さい。

バックグラウンド事象(実データ)

多数の2次粒子が生じており、N_{TRT3} が少なくなる カロリーメータのアクティビティは高い

実粒子の飛跡を反映していないtrack のため、 N_{TRT3} が少ない。 カロリーメータのアクティビティもほと んどない 8

データを用いたバックグラウンドの見積もり

* バックグラウンドのreduction rateが高い

* materialの効果、さらにbadly reconstructed trackの影響を正しく評価するために backgroundの見積もりは全て実データを用いて行う。

- BG shape の抽出

*コントロールサンプルからtrack p_Tの分布を用いる

*観測されたtrack p_T 分布からある関数形にfitを行いsmoothingをする。

- BG及びsignalの見積もり

* fitしたBGの関数とsignalのp_T分布でcandidate track にsimultaneous fit を行う。

コントロールサンプルの抽出(1) -hadron interaction track-

→ 突き抜けたtrackを選ぶためN_{TRT3}>10を要求

コントロールサンプルの抽出(2) -badly reconstructed track-

- σ(p_T)>3 - σ(p_T)>5 badly reconstructed track

→ Npixel == 0 を要求することで badly reconstructed trackを選ぶことが出来る

→ 再構成されるpT分布は実際の粒 子のp^{true}」によらない

コントロールサンプルの抽出(3) -セレクションのまとめ-

	Hadron interaction	Badly reconstructed			
Kinematic selection					
Missing Et	Missing $E_T > 130 \text{ GeV}$	Missing $E_T < 100 \text{ GeV}$			
Jet Pt	1st Jet p _T > 130GeV				
	3rd Jet p _T > 60GeV				
Track selection					
N _{pixel}	>= 1	== 0			
N _{TRT3}	> 10	< 5			
付随するカロリーメータ	あり	なし			
アクティビティ	$(\Sigma_{\Delta R<0.1}E_T^{clus}/p_T^{track}>0.3)$	$(\Sigma_{\Delta R<0.1}E_T^{clus}/p_T^{track}<0.3)$			

- * Hadron interaction のtrackは, jet 中のtrack及び hadronic decayを起こしたtauが 起源なので、track pt分布はkinematicに依存する。そのため、同じkinematic selectionを要求した
- * Badly reconstructed trackはkinematicに依存しないので、Missing E_T < 100GeVを 要求し,jetのみのtriggerで取得されたsampleを用いた

BG shape の抽出

- data-drivenでバックグラウンドの見積もりを行うためにtrackのpT分布を 用いる
- 2つのバックグラウンドの形を見積もるために、冪の効果及びexponentialの テールを再現するような関数でfitting
- さらにbadly reconstructed trackは長いテールを引くため、その効果を再現する ために定数の項を加える
- fit parameterのエラーは最後の見積もりでBG shapeのuncertaintyとして評価 に加える

BG及びsignalの見積もり(1)

左図は得られたバックグラウンド及び signalのtrack p_T shape それぞれの形はまったく異なる

得られたBG及びsignalのtrack pT shapeから、unbinned maximum likelihood 法を用いてbackground の数及びsignal yieldを見積もる

系統誤差として以下のものを計上する

	source	uncertainty
signal	Jet energy scale	+/- 9%
	Track reconstruction efficiency	+/- 2%
	Theoretical cross section	+/- 15%
	Luminosity	+/- 3.7%
background	Background shape	shapeの不定性としてfitの parameterのエラーを計上

BG及びsignalの見積もり(2)

Background及びsignalのp_T分布を用いたfitの結果

<u>有意なexcessは見られず、chargino trackは観測されなかった</u>

backgroundのみの結果

background + signalの結果

AMSB charginoのcross-sectionに対する制限

charginoの探索のsensitivityは、charginoの寿命に依存する

-寿命が短すぎる場合、trackが再構成されない

-寿命が長すぎる場合、内部飛跡検出器内で崩壊する数が少なくなる 1.02fb⁻¹での探索において、上図の領域でAMSB charginoのcross-section に制限がつけられる(90GeVのcharginoなら寿命が0.2~5nsの範囲で排除)

AMSB charginoの質量と寿命における制限

- m(chargino)の異なるMCを用いてupper limitを計算。各点の内分点をとって (spline補間)排除される領域を求めた。
- •1.02fb⁻¹の統計でLEP2の探索における制限に到達した。 (LEP2のlimitはm(chargino)=90GeV)
- •0.2~5nsの範囲ではLEP2のlimitを超え、92GeVまでのcharginoを排除
- さらなる統計でsensitivityも改善が見込まれる

まとめ

- ATLAS検出器で取得された重心系エネルギー7TeV,積算ルミノシティ
 1.02fb⁻¹のデータで、超対称性模型から予言される長寿命荷電粒子の探索を行った
- AMSBモデルにおいては長寿命のcharginoがあり、その信号の観測がATLAS 検出器においても期待される
- 長寿命のcharginoは高い運動量を持ったトラックが、途中で消失したような 特徴的な信号をつくる
- 実際の探索において、バックグラウンドとなるのはhadron interactionを起こした track及び検出器内で散乱し、誤って再構成されたbadly reconstructed trackが ある
- materialの効果、さらにbadly reconstructed trackの影響を正しく評価するために backgroundの見積もりは全て実データを用いて行った
- 探索の結果、chargino trackは観測されなかった
- charginoの寿命が0.2~5nsの場合において質量90GeVのcharginoが排除され、 LEP2のlimitを超えた
- 更なる統計でsensitivityの改善が見込まれる

backup

AMSB事象(gluino対生成process)のmissing E_T及びJet

Sample	M0 [GeV]	M3/2 [TeV]	τ(chargino) [ns]	m(chargino) [GeV]	Cross- section[pb]
LL01	1500	32	1	90.2	6.10 × 10 ⁻²
LL02	1800	41	1	117.8	7.65 × 10 ⁻³
LL03	2000	51	1	147.6	1.00 × 10 ⁻³

gluino対生成processでのAMSB事象は大きなmissing E_T及び大きな運動量もった Jetが生じる

20

chargino track

<u>chargino trackのreconstruction efficiency</u> <u>chargino trackと他のtrackとのminimum dR</u>

TRT内部で崩壊するcharginoのtrack reconstruction efficiency はほぼ100% となる chargino のtrackは他のtrackと距離が離れて おり、isolateしている

unbinned maximum liklihood法

$$\mathcal{L}(\mu, n_{b}, f_{bad}, \alpha, \vec{\beta}_{bad}, \vec{\beta}_{had}) = \prod_{n_{obs}}^{n_{obs}} \mathcal{L}(p_{T}; \mu, n_{b}, \alpha, \vec{\beta})$$

$$= \prod_{n_{obs}}^{n_{obs}} \left[\frac{\mu n_{s}^{exp}}{n_{b} + \mu n_{s}^{exp}} \mathcal{L}_{s}(p_{T}; \mu, \alpha) + \frac{n_{b}}{n_{b} + \mu n_{s}^{exp}} \mathcal{L}_{b}(p_{T}; \vec{\beta}_{bad}, \vec{\beta}_{had}) \right],$$

$$n_{s}^{exp} = L\sigma_{s}\epsilon_{s}(1 + \alpha),$$

$$\mathcal{L}_{b}(p_{T}; \vec{\beta}_{bad}, \vec{\beta}_{had}) = f_{bad}\mathcal{L}_{bad}(p_{T}; \vec{\beta}_{bad}) + (1 - f_{bad})\mathcal{L}_{had}(p_{T}; \vec{\beta}_{had}),$$

unbinned ML法で用いたパラメータは以下の通り

μ	the signal strength
n _{obs}	the observed number of events
n ^{exp} s	the expected number of signal events for a given model
n _b	the number of background
L	the integrated luminosity
σ _s	the signal cross section
ε _s	the signal selection efficiency
f _{bad}	the fraction of bad track In the background
α	the nuisance parameters representing the signal normalization
β_{had}	the nuisance parameters representing the pT spectrum of the hadron track
β_{bad}	the nuisance parameters representing the pT spectrum of the bad track