

LHC-ATLAS実験におけるタウレプトン対に崩壊するヒッグス粒子の探索

<u>中村浩二</u>, 塙慶太^A, 田中純一, 増渕達也, 山村大樹 東大素セ, 筑波大数理^A

2011年9月16日

ヒッグス探索とタウチャンネル

- 直接探索ではmH<114GeV(LEP), 158<mH<173GeV(Tevatron)を棄却。
- 標準理論の精密測定によって予想されるヒッグス粒子の質量は

115<mH<132GeV (68% CL.)

LHCにおいて探索可能な主要チャンネル

2011年9月16日

neglects correlations

Theory uncertainty Fit including theory errors

Fit excluding theory errors

ប

35%

95%

ŝ

18

16

14

12 10

タウチャンネルのもう一つの動機

2011年9月16日

g

$$τ$$
 decay :
 $τ$ →l vv ~1/3
 $τ$ →h v ~2/3
* I = e or μ
h = π/K's

 $\tau\tau \rightarrow \parallel ~~1/9 \text{ (small bkg.)}$

 $\tau\tau \rightarrow lh ~4/9$ (best sensitivity)

 $\tau\tau \rightarrow hh \sim 4/9$ (bad S/N ratio)

- Trigger: electron(20GeV) or muon(18GeV)
- 異符号のレプトンとhadronicタウ(20GeV)+大きな Missing Et(20GeV)
- レプトンとmissingのTransverse Mass (M_T<30GeV)

質量の再構成と背景事象

背景事象の見積もり

 $e\tau_{had} + \mu \tau_{had}$ channels **ATLAS** Preliminary Z→ττの分布 С О ₽ 250 - アイデア: Z→μμのデータを用いて、μをシミュレーション のτに置き換えることでZ→ττの分布を作る。 Embedded Z/γ* 200 7 TeV, L dt = 1.06 fb - 事象数は事象選択の途中(lepton+tau選択後)で理論 150 予想に規格化。 100 50 W+jetsとQCD背景事象(tauの誤同定) - アイデア: jetがtauにfakeするときtauの電荷はランダム 100 150 200 250 300 なので、leptonとtauが同符号(SS)の事象から異符号 MMC m_{rt} [GeV] (OS)の事象を見積もる。 $e\tau_{had} + \mu\tau_{hac}$ - QCD: OS=SS (data, MCともに確認。) A(120)/H/h→ττ, tanβ=20 - W+jets : OS>SS ←quark jetの影響 **≌**200 $Z/\gamma^*(\rightarrow \tau \tau)$ emb.(OS-SS) 000 E W+iets (OS-SS) (補正の必要あり。) W+jets OS/SS 比はW CRから求める。 800 $(Q = -\frac{1}{3})$ $\sqrt{s} = 7 \text{TeV}, \quad L = 1.06 \text{ fb}^{-1}$ 600 W+iets 400 iets OS-SS →SSの事象をそのまま使いW+jetsのOS-SS分を補正。 200 →この方法だとSSに含まれるその他のFake 事象も同時 200 250 に見積もることができる。 100 150 $m_{\tau\tau}$ visible [GeV]

• データから見積もった背景事象

主な系統誤差	值
QCD OS=SS 仮定	19% (sys.) + 11%(SS stat)
W+jets OS/SS 比	11%(measurement) + 10% (mc model)

シミュレーションを用いた背景事象および信号

主な系統誤差	典型的な値	事象数に対する値		
		Z→tautau	Signal(@120GeV)	
Jet/tau energy scale	5-10%	11%(tauのみ)	26%	
Tau 同定効率	9.1%	9.1%	9.1%	
Electron 同定効率	3%	3.0%	3.6%	
Muon 同定効率	2%	1.3%	1.0%	
Luminosity	3.7%	3.7%	3.7%	
生成断面積		5%	14% (tanβ=20)	
Generator		14%	7%	

2011年9月16日

Final state	Exp. Background	Data
ℓau_{had}	$(2.1 \pm 0.4) \times 10^3$	1913

データの分布は信号なしの分布と一致

モデルや生成断面積に対する制限

- MMC分布をdiscriminantとす るProfile likelihoodを構築。
- すべての系統誤差は
 Nuisance parameterとし
 Likelihoodに入れた。
- Tau/Jet energy scaleは分布の違いも考慮。
- 95% CL. の制限を求める。

- H→ττ→II チャンネル
 - One electron + one muon
 - Scalor sum : e+mu+MET<120GeV (top veto)
 - e-muがback-to-back
 - 背景事象: Z→ττ 支配的

- H→ττ→hh チャンネル
 - Trigger : 2 hadronic tau
 - 2 hadronic taus+large MET
 - 背景事象:QCDが支配的

2011年9月16日

MSSM mhmax シナリオ

- mA=110-140GeVでtanβ>15を、mA=400GeVでtanβ>40を棄却。
- ・ すべての領域でIhチャンネルが支配的。

モデルによらない制限とSMヒッグス

 $ggF, bb \phi 過程のアクセプタンスを仮定して、<math>\sigma_{\phi} xBR(\phi \rightarrow \tau \tau)$ に対する制限を与えた。 SM ヒッグスの生成断面積に対する制限を与えた。(制限を理論予想で規格化) ττ) [pb] N N N All channels 0³ $e\tau + \mu\tau$ channels 90 Observed $gg \rightarrow \phi$ CLs **Observed CLs** 95% CL. limit on σ 80 ••• Expected $gg \rightarrow \phi$ Expected CLs BR(ϕ -Observed bb

CLs 70 10² +2sExpected bbo $\sigma_{SM} \times BR(H_{SM} \rightarrow \tau \tau)$ theory 60 +1supper limit on $\sigma_{\phi}\!\times$ 50 $\sqrt{s} = 7$ TeV, Ldt = 1.06 fb⁻¹ 10 40 $\sqrt{s} = 7 \text{ TeV}, \quad \text{Ldt} = 1.06 \text{ fb}^{-1}$ **ATLAS** Preliminary 30 20 С О 10 **ATLAS** Preliminary 10⁻¹ 95% 200 300 400 500 600 130 150 100 110 120 140 m_o [GeV] m_H [GeV] 標準理論の6倍の制限(expectedは12倍)@120GeV

2011年9月16日

- 2011年夏までのデータ(1fb⁻¹)を用いて、タウレプトン対に崩 壊する過程で、ヒッグス探索を行った。
- ・ 結果は信号なしの分布と一致。
- MSSM(mhmax)シナリオのパラメータの棄却領域を大幅に 広げた。
 - mA=110-140GeVでtanβ>15を、mA=400GeVでtanβ>40を棄却。
- 標準理論ヒッグスに対する制限も与えたが、最適化をする 必要がある。
 - 標準理論の6倍の制限(expectedは12倍)@120GeV
- 今後VBF過程に最適化した解析を行う。
 - VBF過程の特徴的である前後方のジェットを 要求することでS/N比が大幅に改善(S/N>1)。
 - 現在のVBF過程の事象数は選択後で1.1event
 →5fb-1で6event予想される。

Missing Mass Calculator

日本物理学会 @ 弘前大

2011年9月16日

Z→tautau background shape

2011年9月16日

・具体的な方法

$$n_{\text{OS}}^{Bkg} = n_{\text{SS}}^{Bkg} + n_{\text{OS-SS}}^{W} + n_{\text{OS-SS}}^{Z} + n_{\text{OS-SS}}^{\text{other}}$$

系統誤差の詳細

- アクセプタンス(断面積)に対する系統誤差の大き。
- 3つの数字はそれぞれ、
 - lep-lep/lep-had/had-had チャンネルに相当

	W+jets	Di-boson	tī+	$Z/\gamma^* \to$	$Z/\gamma^* \to$	Signal
			single-top	ee, µµ	$ au^+ au^-$	
$\sigma_{\it inclusive}$	-/-/5	7	10	5/5/-	5	14/14/16
Acceptance	-/-/20	4/2/7	3/2/9	2/14/-	5/14/14	5/7/9
e efficiency	-/-/0.8	4/3.1/0.5	4/3.6/0.3	4/3.1/-	4/3.0/0.5	4/3.6/0.1
μ efficiency	-/-/0.3	2/1.2/0.4	2/1.1/0.0	2/1.3/-	2/1.8/0.4	2/1.0/0.1
τ efficiency and fake rate	-/-/21	-/9.1/15	-/9.1/13	-/48/-	-/9.1/15	-/9.1/15
Energy scales and resolution	-/-/+34	$2/_{-9}^{+19}/_{-12}^{+26}$	6/+5/12	$1/_{-25}^{+39}/-$	$1/11/_{-23}^{+63}$	$1/^{+30}_{-23}/^{+9}_{-8}$
Luminosity	-/-/3.7	3.7	3.7	3.7/3.7/-	3.7	3.7
Total uncertainty	-/-/ ⁺⁴⁵	$10/_{-16}^{+23}/_{-22}^{+32}$	13/15/23	8/+64/-	9/21/+67	$16/_{-30}^{+35}/_{-25}^{+26}$

2011年9月16日