19aSD-06

山中隆志、金谷奈央子^A、浅井祥仁、駒宮幸男 東大理、東大ICEPP^A

THE UNIVERSITY OF TOKYO

日本物理学会 2011年秋季大会 弘前大学 2011年9月19日

- 超対称性理論は標準理論を超えるモデルの有力候 補の一つ
 - R-parityを保存するシナリオでは消失エネルギーと多数の ジェット(及びレプトン)が特徴
 - 一般的に第三世代の超対称性粒子は他よりも軽く、その 結果スカラートップやスカラーボトムが対生成したりグ ルーイーノの崩壊から生じやすくなる

→ 終状態にb-jetを持つ

 $^{\sim}g \rightarrow b + ^{\sim}b_1$ decay diagram

 $\sim g \rightarrow t + \sim t_1$ decay diagram

- 2011年にLHC-ATLAS実験で取得された約2 fb⁻¹のデータを用いて解析
- 消失エネルギーが大きく、b-jetを含む多数のジェットを持つeventsを選択 する
 - (特にmSUGRA-likeなmodelにおける)グルーイーノの崩壊から生じるスカラー トップ・ボトムクォークをターゲット
 - 本講演ではleptonがないチャンネルを用いる
- Jet+Missing E_T triggerを使用
 - − leading jet p_T >130 GeV && Missing E_T > 130 GeV Cefficiency > 98%

dataでのleading jet p_T >130 GeV後の Missing E_Tに対するtrigger efficiency

- Event Selection
 - lepton veto (electron $p_T > 20$ GeV, muon $p_T > 10$ GeV)
 - leading jet $p_T > 130 \text{ GeV}$
 - Missing $E_T > 130 \text{ GeV}$
 - at least 4 jet $p_T > 80$ GeV
 - b-jet ($p_{T} > 50 \text{ GeV}$) ≥ 1
 - Missing $E_T / m_{eff} > 0.2$
 - $\min \Delta \varphi > 0.4$

- QCD multi-jet eventsを効果的に減らす

Jet+Missing E_⊤ trigger

- $\Delta \varphi$ (4thjet-MissingE_T) > 0.2
- $m_{\rm eff} > 1 \, {\rm TeV}$
- 変数の定義
 - min $\Delta \varphi$: leading 3 jetとMissing E_Tの間の $\Delta \varphi$ の最小値
 - m_{eff} : leading 4 jet p_{T} とMissing E_{T} のスカラ一和 $m_{\text{eff}} = \sum_{i=0}^{3} p_{\text{T}}^{(i) \text{ jet}} + E_{\text{T}}^{\text{miss}}$

- *b*-jetはbottom quarkが中間子などを作って比較的長 寿命になることを利用してtagする
 - secondary vertexとimpact parameterの情報をcombineしたtagging algorithmを使用
 - b-tag efficiency~60%に対して、light jet rejection rate~350

- top, W+jets, Z+jets
 - Monte Carlo Simulationを用いた推定

process	Generator	cross section
ttbar	MC@NLO + Herwig	165 ⁺¹¹ ₋₁₆ pb (NLO)
single top	MC@NLO + Herwig	85 ± 3 pb (NLO)
W(→lv)+jets	Alpgen + Herwig	31.4 ± 1.6 nb (NNLO)
Z/γ*(→II)+jets	Alpgen + Herwig	12.8 ± 0.64 nb (NNLO)
Z(→vv)+jets	Algepn + Herwig	5.82 ± 0.29 nb (NNLO)
SUSY	Herwig++	NLO

- ・Parameter依存は系統誤差として評価(p.8にて説明)
- ・MCでの推定が困難なQCDは別の方法で推定(次ページ)

- QCD multi-jet event
 - large Missing E_T cut後に残る QCD multi-jet eventはジェット のエネルギーの測定ミス及び heavy flavor jetのleptonic decayによるもの

Smearing method

- 1. QCD processが主要な領域のデータを取得
- ジェットのエネルギーをjet response functionに 基づいてsmearし、擬似的なeventsを作り出す (1eventにつき10000)
- これらに同様のevent selectionを行うことで、 QCDによる寄与を推定

7

- Jet : energy scale, pileup, heavy flavor
- *b*-tagging : efficiency, light-jet fake rate
- Luminosity
- Theory
 - ttbar : cross section, ISF/FSR variation, generator dependence (MC@NLO, POWHEG, ALPGEN), Parton shower fragmentation model (HERWIG, PYTHIA)
 - single top : cross section, use same uncertainties on ttbar
 - W/Z+jets : cross section, Renormalization/factorization scale, heavy flavor rescale
 - SUSY signals : Renormalization/factorization scale, PDF (CTEQ6.6M)

Event selection後のttbar及びSUSY signalのreference pointにおけるsystematic uncertainties

	Events(2.05fb ⁻¹)	Jet	<i>b</i> -tag	Lumi	Theory	Total
ttbar	7.7	±25%	±12%	±3.7%	+33%,-18%	+43%,-33%
m ₀ =1240GeV, m _{1/2} =220GeV*	16.2	±18%	±10%	±3.7%	±19%	±28%
m ₀ =560GeV, m _{1/2} =400GeV*	19.5	±7.4%	±7.3%	±3.7%	±31%	±33%

* mSUGRA, tanβ=40, A₀=-500GeV, μ>0

• m_{eff} cut前の分布

Expected & observed events

	top	W	Z	QCD	others	Total(MC)	Data(2.05fb ⁻¹)
before $m_{\rm eff}$ cut	93±28	7.5±2.0	4.2 ± 1.9	30±15	0.1 ± 0.1	135 ± 32	132
$m_{ m eff}$ > 1TeV	8.8±3.3	1.1 ± 0.8	1.2 ± 1.2	0.3 ± 0.2	< 0.1	11.4 ± 3.7	10

Standard Modelとconsistentな結果となった

• N^{b-tagged jets}もSMにconsistent

m_{eff} cut前

 $m_{\rm eff}$ > 1 TeV

• Highest $m_{\rm eff}$ event

- mSUGRA/CMSSM (tanβ=40, A₀=-500GeV, μ>0)に対する exclusion limitを計算
 - スカラートップ質量 < 750 GeVの領域が95% CLでexcludeされた</p>

ATLAS Collaboration, Phys. Lett. B 701 4 (2011) 398

- LHC-ATLASで2011年に取得された2 fb⁻¹のデータを用いて、スカラートップ クォークの探索を行った
 - 0-lepton, 4-jet (at least 1 b-jet)を要求
- シグナルをenhanceするようevent selectionした結果、Standard Modelと consistentなevent数が残った
 - この結果を使って、mSUGRA (tanβ=40, A₀=-500 GeV, μ>0)モデルにlimitを付け ると、m(~t₁) < 750 GeVを95% CLで、exclude
- この2 fb⁻¹のデータを使えば、スカラートップクォークの他のtopologyにおいても未知の領域での探索が十分に可能
- 特にdirect pair production searchを目的とした下記のtopologyの解析も 進行中
 - 2 *b*-jet + Missing E_T (for $\sim b_1$ pair production search)
 - − 2-lepton + 2 jet (at least 1 *b*-jet) + Missing E_T (for $\sim t_1 \rightarrow b + Z/h + \sim G$ search)

- その他のb-jet searchの結果
 - 0-lepton, 3-jet (1 or 2 *b*-jet) ATLAS-CONF-2011-098

14

- その他のb-jet searchの結果
 - 1-lepton, 4-jet (1 *b*-jet) ATLAS-CONF-2011-130

