

ATLAS内部飛跡検出器アップグレードに向けた ビーム試験用DAQシステムの構築

東京工業大学 基礎物理学専攻 岸田 拓也

久保田知徳, 陣内修 遠藤理樹^A, 岡村航^A, 花垣和則^A 池上陽一^D 海野義信^D 田窪洋介

池上陽一^D,海野義信^D,田窪洋介^D,木村直樹^F,近藤敬比古^D,高嶋隆一^C,東城順治^D,寺田進^D,永井康一^E,中野逸夫^B,原和彦^E,寄田浩平^F,他アトラスSCTグループ

東工大, 阪大理^A, 岡山大^B, 京都教育大^C, 高工研^D, 筑波大^E, 早大理工研^F,

LHCとATLAS実験

- LHC(Large Hadron Collider)
 - 陽子陽子衝突型加速器
 - 重心系エネルギー vs = 7 TeV (14 TeV)
 - 瞬間最高ルミノシティ 2.72×10³³ [cm⁻²s⁻¹] (10³⁴ [cm⁻²s⁻¹])

(値は現在値、括弧内はデザイン値)

- ATLAS(A Toroidal LHC ApparatuS)
 - LHCの衝突点の一つに設置されてい る汎用検出器
 - 主な検出器:
 内部飛跡検出器、カロリメータ、
 ミューオンスペクトロメータ

LHCアップグレード

SCT アップグレード

SCT Module	現在	アップグレード後 (short)
Sensorの形式 (放射線耐久に強く寄与)	p-in-n	n-in-p
ちき大	12 cm × 6 cm	10 cm × 10 cm
Strip Sensorの長さ	12 cm	2.4 cm
Strip Sensorの間隔	80 μm (768strips)	74.5 μm (<mark>1280strips × 4</mark>)
読み出しChip	ABCD3T (× 12)	ABCN (× 40)

新DAQシステムと既存DAQとの違い

	既存DAQ	新DAQ
最多読み出しLine	4	33
使用製品	専用VME module (高価&汎用性低)	SEABAS (<mark>安価&汎用性高</mark>)

昨年度の新DAQシステムの開発担当者 : 岡村航氏(大阪大学)

昨年度までの開発状況

- 1 data lineにおける宇宙線測定
- 2 data lineにおける読み出しChipの内部擬似信号による試験

参照:

2010年秋季日本物理学会

"ATLAS実験シリコンストリップ飛跡検出器アップグレード用読み出しシステムの開発"

by岡村航氏(大阪大学)

2010年度後半から、この岡村氏の構築した新DAQシステムを基本にして

- •大阪大学 : ATLAS SCT用moduleへの対応
- •東京工業大学 : TestBeam用DAQの構築

が行われている。

2011/9/18

新DAQシステム(SEABAS DAQ)

- 新井氏/内田氏(KEK)作製のTCP/IP汎用読み出しボード 「SEABAS」を使用
 - User FPGA: FrontEnd ASICのコントロール用
 - SITCP FPGA: TCP/IP通信用
- 開発内容
 - PC側読み出しSoftware (C/C++)
 - User FPGAの実装

新DAQシステム(SEABAS DAQ)

- 新井氏/内田氏(KEK)作製のTCP/IP汎用読み出しボード 「SEABAS」を使用
 - User FPGA: FrontEnd ASICのコントロール用
 - SITCP FPGA: TCP/IP通信用
- 開発内容
 - PC側読み出しSoftware (C/C++)
 - User FPGAの実装

新DAQシステム(SEABAS DAQ)

- 新井氏/内田氏(KEK)作製のTCP/IP汎用読み出しボード 「SEABAS」を使用
 - User FPGA: FrontEnd ASICのコントロール用
 - SITCP FPGA: TCP/IP通信用
- 開発内容
 - PC側読み出しSoftware (C/C++)
 - User FPGAの実装

PC Software

TestBeamシステム概略図

- ChipへのCommand Line複数化
- ・複数Lineにおける外部Triggerと実信号を使用した読み出し

変更後のSEABAS DAQ

TestBeam用に変更したSEABAS DAQのCommand送信とData受信機構

2011/9/18

SEABAS DAQ同時読み出し

SEABAS DAQ同時読み出し結果

BeamTracking用DAQ

Telescope位置検出器 = 高分解能なSilicon Strip位置検出器

- Telescope位置検出器
 - Silicon Strip 検出器
 - X方向・Y方向の2つで1組
 - X•Yそれぞれ384 ch
 - Strip間隔: 50 µm
 - 20 mm 四方
 - 分解能:~5μm(design值)

BeamTracking用DAQ

BeamTracking用DAQ (Telescope)を用いて宇宙線を検出した結果。

測定結果:

- 測定時間 : ~37時間
- ヒット数 : 457 hit
- MC予想 : 507.8 hit

まとめ

- 目的:
 - 開発中の評価試験用DAQシステムの変更
 - 上記を用いたTestBeam用DAQの構築
 - ▶高分解能なBeamTrackingを行った上で、最大8枚のサンプルセン サーの評価試験が可能なものを目指す
- 現状: TestBeam用DAQに必要な2つのDAQの、独立な動作がほぼ確立出来た
 - SEABAS DAQ:複数Lineの読み出し試験が完了
 - BeamTracking用DAQ:宇宙線による信号の読み出し試験が完了
- 今後
 - 2つのDAQの統合(現在進行中)
 - 構築後、本年度内にRCNP(阪大)のBeamLineにおいて実試験を行う

Back up

Pin N / Nin P

SEABASの読み出しLine

• SEABASのABCN-Chip読み出しに使用できるLine数(LVDSの入出 カが可能なLine)

- 37本

- ABCN-Chip1枚に必要なLine
 - HardReset
 - L1 Trigger → 全chip共通で構わない
 - Clock, BC
 - (ClockとBCは両者とも40MHzで共通)
 - Command
 - Data

ー最多読み出し可能Line数ー Command Line全Line共通 : 33 Line Command Line全Line個別 : 17 Line

読み出しChipのNoise

Chipの入力端子がセンサーへのラインにワイヤーボンドされているch

L1 Delay Scan Test

L1 Delay Scan:

従来、Trigger SignalはInject Pulseよりも遅れてくるものである。

その為、本TestはABCN ASICがTriggerを受け取った際に、Triggerを受けたタイミングからどれだけ遡ったタイミングでHit Dataを読み出せばよいかを決定する為のTestである。

このTESTでは、各L1 Delay値につきそれぞれ100Trigger分のdataを貯めている。

Gain Curve Test

Gain Curve Test:

• Vt50/Gain/Output Noise/Input Noise vs Charge

各chの Threshold Curveから出したVt50/Gain/Output Noise/Input Noiseのch平均値を、各Inject Charge[fC]を横軸に取ってplot したもの。

Gain Curveを取り、このChipのGain特性を明らかにすることは、適切なThresholdを設定する際等に必要となる。

Checking Source Test(L1 Delay Scan)

---- SET UP ----

Checking SourceとPMT+シンチレータ(Trigger)とSensor

- ・ 使用Checking Source : 90Sr (β線源、Avg E : ~ 1 MeV(Max E : ~ 2 MeV))
 - Sensorに落とすEnergyは~5fC
- Threshold : 250 mV (~2.5fC)

- 上図より、この測定で使用したSetupでの適切タイミング(L1 Delay)は5 or 6(= 125 or 150 ns)となる。
- 今回の試験ではASICのchのうち32ch,34ch,36ch,・・・,92ch,94ch,96chのみしかSensorに繋がっていない為、hit分布が上図のようになる。

Checking Source Test(Hit Test)

- ・ 使用Checking Source : 90Sr (β線源、Avg E : ~ 1 MeV(Max E : ~ 2 MeV))
- Threshold : 250 mV (~2.5 fC)
- L1 Delay : 5

- Sensorに繋がっているch(32ch~96ch)にHitが見える。
 - ✓ 仮にL1 Delayの値を5 or 6以外の見当違いの値にすると、hitは全く得られなくなる。