日本物理学会(弘前大学) 17pSD-5 2011年9月17日

LHC-ATLAS実験における弱ボソン対に 崩壊する共鳴状態の探索

<u>寺師弘二</u>、田中純一、中村浩二、増渕達也 東京大学素粒子物理国際研究センター

弱ボソン対生成での探索

終状態にWW/ZZ/WZを含む、弱ボソン対共鳴状態の探索を行っている

- ▶ Warped Extra Dimension (RS)、 Extended Gauge Model (EGM) W'/Z'、 Higgsなどからの信号が期待される
- ▶レプトン対崩壊を用いた解析から 強い制限がつけられている
 - EGM W' \rightarrow I ν : Mw' > 2.3 TeV
 - RS Graviton \rightarrow II : M_G > 1.8 TeV

弱ボソン対が主要な信号になる模型

- Technicolor – $\rho_{TC}/a_{TC} \rightarrow WZ$ Bulk Randall-Sundrum
 - KK Graviton \rightarrow WW/ZZ

Three-site Higgsless

-
$$Z' \rightarrow WW, W' \rightarrow ZZ$$

MC解析のみです。残念ながらデータを使った結果は間に合わず、、、

実験での現状

ベンチマーク EGM W'→WZ, Randall-Sundrum G→WWへの制限 CMS Preliminary 2011 $\sqrt{s} = 7 \text{ TeV}$ 10² σ x B(G → WW) [pb] σ · **BR (pb)** $L dt = 1.15 \text{ fb}^{-1}$ **Expected Limit** DØ, 5.4 fb⁻¹ 10 **Observed Limit** W' Limit = 784 GeV10-1 — σ x B(G → WW) **10**⁻¹ 10^{-2} Obs. Limit Exp. Limit arXiv:1011.6278 10⁻² ± 1σ **CMS-EXO-11-041** $\pm 2\sigma$ 300 500 900 400 700 $\sigma_{W'}$ 200 600 800 1000 10^{-3} **RS Graviton Mass [GeV]** 700 800 400 500 600 900 300 M_{wz} (GeV) DØ (5.4 fb⁻¹) CMS (1.15 fb⁻¹) ► RS G→WW→I ν +jj ▶ High mass signalへの感度はl ν +jj、 ► EGM W' \rightarrow WZ \rightarrow I ν +II ||+jjが最も高い Low-Scale Technicolor $\rho_{TC}/a_{TC} \rightarrow WZ \rightarrow |\nu + ||$ 95% C.L. で棄却 CMS EGM W'→WZ M < 784 GeV DØ RS G→WW, (k/ \overline{M}_{pl} =0.1) 300 < M < 754 GeV CDF RS G \rightarrow ZZ, (k/ \overline{M}_{pl} =0.1) M < 491 GeV

解析のストラテジー

	WW	WZ
Ιν+jj	44%	23%

WW/WZ→Iν+jjの場合

- ▶ W→I*ν*+≥2jets事象の選別
- ▶ Background Control領域の設定
- ▶ M_{Iνjj} (あるいはMT)分布でのBump Search

ZZ/ZW→II+jjの場合

- ▶ Z→II+≥2jets事象の選別
- ▶ Background Control領域の設定
- ▶ Mijj分布でのBump Search

Resolved Approach (up to ~1 fb⁻¹)

1 TeVを超える共鳴状態の崩壊から 生成されるW/Z→jjは、高い確率で Single Jetとして再構成される。

▶ジェット質量・subjet構造等を事象 選別に利用

Merged Approach (>1 fb-1)

背景事象の評価

ZZ/ZW→II+jjの場合: Resolved Approach

- ▶ Z→II+jetsが最も主要なBackground
- ▶ Z→II+jets Control領域(Mjj sideband)でデータ/MCの比較
- ▶ ttbar Control領域でMC予想の確認
- ▶ Diboson, single top, W+jetsはMCで評価
- ▶QCDはデータで評価

背景事象の評価

tt Background

- ▶ MCベースのBackground評価
- ▶ 2 leptons + M_{jj} sideband + E^{TMiss}
 >~80GeVでnormalizationをデータ
 で確認
- ▶ 異なるGeneratorで系統誤差を評価

QCD Background

- ▶ Loose lepton selectionでMIの QCD分布形をデータで評価
- ▶標準カット後のMI分布へのFitで normalizationを決定

MC での 解 析

7

 Z/γ^* +jets

WZ/ZZ/WW

tt

ll+jjチャンネル

Background

- ALPGEN+HERWIG/JIMMY
- ALPGEN+HERWIG/JIMMY W+jets
- MC@NLO+HERWIG/JIMMY
- MC@NLO+HERWIG/JIMMY single top
- HERWIG+JIMMY

Signal

- PYTHIA G \rightarrow ZZ \rightarrow qqII (I=e, μ) : k/ \overline{M}_{pl} = 0.1
- PYTHIA W' \rightarrow WZ \rightarrow qqll (l=e, μ)

Resolved Approach

Pre-selection

- \blacktriangleright =2 electrons or =2 muons (p_T>20 GeV)
- ▶ |M_{II} M_Z| < 25 GeV
- ≥2 jets (p⊤>25 GeV)

Low (High) Mass signal selection

- ▶ 65 < M_{jj} < 115 GeV
- pT^{II} >50 (200) GeV }→ W/Zはboostされる
- ▶ p⊤^{jj} >50 (200) GeV. ことを利用

MC解析の結果(1 fb⁻¹)

- ▶ 分布は全て1 fb⁻¹に規格化
- ▶ Mijj分布でlikelihood fit
 - 250 GeV毎の信号サンプルを使用
 - 実際の解析では信号のresolution (σ_{gaus}=30-50 GeV)毎にテンプレート を作成

- Modified frequentist method
- ▶ 系統誤差は含まない
- ▶ 850GeV程度までのRS Gravitonに 感度がある

系統誤差の予想

ZZ/ZW→II+jjの場合∶

Resolved Approach

- ▶ 理論断面積の誤差(diboson, ttなど)
- ▶ Z→II+jets Control領域での比較
- ▶ MC予想の分布形の違い(Z+jets, tt)
- ▶ 信号アクセプタンスの不定性
 - PDF (NLO)
 - ISR/FSR

現在予想されている系統誤差		
Luminosity	3.7%	
Backgroundの評価		
Z+jets (normalization)	~35%	
Z+jets (Control Region shape)	~20%	
Z+jets (Signal Region shape)	~20%	
ttbar (σ)	10%	
ttbar (shape)	25%	
W+jets (σ)	30%	
WZ/ZZ (σ)	5-7%	
QCD (normalization)	100%	
Signalの評価		
PDF	~1%	
ISR/FSR	~10%	

➡ Z+jets BGの系統誤差を 押さえることが重要

Merged Approachの可能性

ATLAS-CONF-2011-073 d a [Ge∕ 0.018 ATLAS Preliminary ATLAS 2010 data: 35 pb ≥0.016 vthia MC10 σ erwia/Jimmv -lb 0.014 Herwia++ 0.012 Anti k_T jets with R=1.0 0.01 $N_{PV} = 1, p_{T} > 300 \text{ GeV}, |y| < 2$ 0.008 0.006 0.004 0.002 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50 100 150 200 250 300 jet mass [GeV]

Merged Approach

Pre-selection

- ► =2 electrons or =2 muons (p_T>20 GeV)
- ▶ |M_{II} M_Z| < 25 GeV

Merged signal selection

- =1 jet : 65 < M_{jet} < 115 GeV
- ≥2 jets : 65 < M_{jet1} < 115 GeV

otherwise resolved approach

Jet massやsubjet再構成の理解が進み、軟正法・ 系統誤差の評価方法が確立されてきた。

- ▶ QCD jet massの測定(Anti-k⊤ R=1.0)
- ▶ Track jetを使った系統誤差の評価

→ Jet mass/subjet情報をW/Z→qqのselection に利用できる環境が整いつつある。

Merged Approachでの予想(5 fb⁻¹)

RS G→ZZに対するII+jjのExpected Sensitivity

▶ High Mass Signalへの感度向上が期待できる(Expected: 850GeV→1.3TeV)

- ▶ただし系統誤差の改善が必要
 - W/Z+jets過程のMjj質量分布等のさらなる理解
 - ジェット質量軟正の改善
 - Pile-upに対してRobustな解析方法の構築

Merged Approachでの予想(5 fb⁻¹)

RS G→WWに対するI ν +jjのExpected Sensitivity

▶ RS G→ZZ→II+jjと同程度の感度がある(Expected:~1.3TeV)

- ▶ 系統誤差の評価を現在進めている
 - W/Z+jets過程の理解、ジェット質量軟正などはII+jjと共通項が多い
 - ET^{Miss}、fake backgroundの理解

まとめ

- ▶弱ボソン対生成を伴う信号粒子探索を進めている。
- ▶信号粒子の質量とデータの理解に合わせて、Resolvedと Merged Approachを採用する予定。
- ▶現在予想される系統誤差を考慮した場合、II+jjチャンネルで 1 (5) fb⁻¹のデータをもとに800 GeV (1.3 TeV)程度までの Randall-Sundrum Gravitonを棄却できる可能性がある。
- ▶弱ボソン対崩壊が主要な信号となる模型を調査中。
- ▶データを使った解析を鋭意進めている。

バックアップ

Merged Approachでの予想(5 fb⁻¹)

EGM W'→WZに対するExpected Sensitivity

▶系統誤差を含まない場合、RS G→ZZと同程度の感度がある(Expected : 1.25TeV)
 ▶系統誤差の改善が非常に重要