ーハドロンコライダーによる エネルギーフロンティアの物理

-LHCの現状とSMの物理-

松下 崇

神戸大学

日本物理学会 弘前大学 2011年9月17日

2011-09-17 JPS LHCの現状と SMの物理 松下崇 (神戸大学) 1/25

- LHC
- ATLAS detector and performance
- Standard Model measurements
- Summary

biased to ATLAS results

Large Hadron Collider at CERN

- The largest accelerator with the highest energy
 - circumference 26.7 km
 - proton-proton collisions at 7 TeV CMS energy

$$\mathcal{L} \propto rac{n_b N_{bunch1} N_{bunch2}}{eta^* \epsilon_n}$$

- Physics runs re-established with 75 ns bunch spacing then switched to 50 ns
- Increased number of bunches to 1380 by end of June
- Reduced ϵ_n from [2.5 3.0] μ m to 2.0 μ m in July August
- Reduced β^* from 1.5 m to 1 m in September

Large Hadron Collider 2011 Integrated luminosity

- 1 ${\rm fb}^{-1}$ of data recorded by 17 June
- by today ...
 - 3.09 fb⁻¹ delivered
 - 2.92 fb $^{-1}$ recorded by ATLAS
 - best in a day: 116.56 pb⁻¹
 - best in 7 days: 499.45 pb⁻¹

parameter	2011	design
beam energy [TeV]	3.5	7
bunch spacing [ns]	50	25
number of bunches	1380	2808
$\epsilon_n \; [\mu m]$	2.0	3.75
eta^* [m]	1.0	0.55
bunch intensity [1011]	1.2	1.15
peak luminosity [cm ⁻² s ⁻¹]	3.29 x 10 ³³	1×10^{34}
stored energy [MJ]	${\sim}100$	362

2011-09-17 JPS

LHCの現状と SM の物理

松下崇 (神戸大学) 5/25

- SEU (single event upset)
 - Radiation induced malfunction of QPS, Cryogenics, Collimators, Power Converters...
 - Dependent on total intensity and luminosity
 - Relocation of electronics and additional shielding planned in Christmas technical stop. In the meantime victim of our own success

Large Hadron Collider 2011 Schedule

• ${\sim}40$ days left for *pp* runs in 2011

$$\mathcal{L} \propto rac{n_b N_{bunch1} N_{bunch2}}{\beta^* \epsilon_n}$$

- Increase bunch intensity up to 1.55×10^{11} (maximum) [$\mathcal{L} \times 1.7$]
- Christmas stop
- Chamonix workshop (6-10 Feb.) to decide run plan in 2012

2011-09-17 JPS LHCの現状と SMの物理 松下崇 (神戸大学) 7/25

✓ テラスケールの物理を探るLHC加速器は順調に動いています 次はATLAS検出器とその性能について

ATLAS collaboration

• \sim 150 participants from Japan (\sim 80 students)

Hiroshima IT, KEK, Kobe, Kyoto, Kyoto UE, Nagasaki IAS, Nagoya, Okayama, Osaka, Shinshu, Tokyo ICEPP, Tokyo MU, Tokyo Tech, Tsukuba, Waseda, (Kyushu)

ATLAS

Detector: Exploring a new territory with a precision instrument is the key to discovery

- Length: ${\sim}45$ m
- Diameter: ∼22 m
- Weight: \sim 7,000 tons
- 2 T solenoid^a and air-core toroids
- Tracker: $|\eta| < 2.5$ [0.05 × $p_T \oplus 1\%$]
 - silicon tracker (pixel + strip)
 - transition radiation tracker
- Calorimeter: $|\eta| < 4.9$
 - EM: lead/LAr $[10/\sqrt{E} \oplus 0.7\%]$
 - hadron: Fe/scint., [50/ $\sqrt{E} \oplus 3\%$] copper/LAr
- Muon system: $|\eta| < 2.7$ [13% at 1 TeV]
 - drift tube, cathode strip chamber
 - thin-gap chamber, resistive plate chamber

^amajor contribution from Japan

Event pile-up in 2011

• distribution of $<\mu>$ in simulation re-weighted to reproduce data

 $Z
ightarrow \mu \mu$ event with 11 primary vertices

- need to study effects on
 - vertexing, lepton isolation, jet energy scale, E_T^{miss} , CPU time/event size

Detector performance

- Luminosity measurement
- Object reconstruction
 - e/μ
 - jet
 - neutrino E_T^{miss}

Luminosity measurement

$$\mathcal{L} = n_b f_{\text{LHC}} \frac{\mu_{\text{vis.}}}{\sigma_{\text{vis.}}} = n_b f_{\text{LHC}} \frac{N_1 N_2}{2\pi \Sigma_x \Sigma_y}$$

- van der Meer scan for $\sigma_{\rm vis.}$
- *N*_{1,2} from
 - DC Current Transformer (CT): total current
 - Fast Beam CT: fraction of current in each bunch
- $\Sigma_{x,y}$ from van der Meer scans
- $\mu_{vis.}$ by LUCID, BCM, Calorimeter
- 2011 $\mathcal L$ uncertainty: \pm 3.7%
 - $N_{1,2}$ measurement: \pm 3.0%

 $\begin{array}{l} n_b\text{: number of colliding bunch pairs} \\ f_{LHC}\text{: LHC revolution frequency} = 11245.5 \text{ Hz} \\ \mu_{\text{vis.}}\text{: measured from detector rates} \\ \sigma_{\text{vis.}} = \epsilon\sigma_{\text{inel.}} \\ N_1, N_2\text{: number of protons in bunch} \\ \Sigma_x, \Sigma_y\text{: profiles of the colliding beams} \end{array}$

Lepton performance

- Re-discovery of known resonances in 2010
 - J/ψ , Υ , Z

- performance study with $Z \rightarrow II$
 - $\sigma(m_Z) \sim 1.8/2.5$ GeV for e/μ
 - efficiency with high precision: $\sigma(\epsilon) \sim \pm 1\%$
 - electron energy scale with high-precision: 0.3–1.6% in $|\eta| <$ 2.47
 - σ(p_T)/p_T = 13% at 1 TeV in barrel region

Jet/missing E_T performance

- Jets reconstructed by anti- k_T algorithm
- Jet Energy Scale uncertainty
 - \sim 3% in $|\eta| <$ 0.8 (central)
- Additional uncertainty due to pile-up
 - $20 < p_T^{jet} < 50$ GeV: 5% in central
 - $50 < p_T^{jet} < 100$ GeV: 2% in central
- E_T^{miss} resolution with $Z \rightarrow II$, QCD di-jets, minimum bias (MB)
- Fit resolution curve with $\sigma = k\sqrt{E_T}$

	k(data)	k(MC)	
$Z \rightarrow ee$	0.42	0.42	
QCD di-jets	0.51	0.50	
MB	0.45	0.48	

 MB difference: probably due to imperfect modelling of soft particle activity

✓ テラスケールの物理を探るLHC加速器は順調に動いています ✓ 検出器も順調に稼働しており、性能評価も進んでいます

次は標準模型の測定について

Physics programme

proton - (anti)proton cross sections

- 発見 = 測定結果 標準模型
- *L* =10³³ cm⁻²s⁻¹に於いて
 - Heavy flavours: \sim 100 kHz
 - Jets ($p_T = 250$ GeV): ~ 100 Hz
 - $W \rightarrow l \nu$: \sim 10 Hz
 - $t\overline{t}$: \sim 0.1 Hz
- ex. Higgs 粒子探索には <1/10¹⁰ の selection が必要
 - Background の理解が重要

Electroweak boson productions

- *WW*/*WZ*/*ZZ* production
 - the last step before Higgs search
 - study of triple gauge boson couplings (TGC)
- Background to searches: $H \rightarrow WW$, $H \rightarrow ZZ$

$WW \rightarrow I \nu I \nu$

- sensitive to triple gauge boson coupling
- important background to $H \rightarrow WW$

2011-09-17 JPS

$WW \rightarrow l \nu l \nu$

- kinematic distributions after selections \rightarrow
- reasonable agreement between data and predictions

	events
Signal (MC)	$232.4 {\pm}~0.9 {\pm}~21.5$
top (data)	$58.6 \pm 2.1 \pm 22.3$
W + jets (data)	$50.5 \pm 4.8 \pm 14.7$
Drell-Yan (MC/data)	$54.0 \pm 3.7 \pm 4.5$
other diboson (MC)	$6.8\pm0.4\pm0.8$
total background	$169.8 \pm 6.4 \pm 27.1$
S/\sqrt{B}	17.8
observed events	414

- $\sigma = 48.2 \pm 4.0 \text{ (stat.)} \pm 6.4 \text{ (syst.)} \pm 1.8 \text{ (lumi.) pb}$
- Systematic uncertainty dominated by data driven background estimation
- NLO prediction: 46 \pm 3 pb
- measurement in agreement with prediction

$WZ \rightarrow I \nu II$

- Three leptons and $E_T^{\text{miss}} > 25 \text{ GeV}$
- $|m_{II} m_Z| < 10$ GeV, $m_T(W) > 20$ GeV

	events
Signal (MC)	$49.1 \pm \ 0.4 \ \pm \ 3.02$
total background	$10.5 \pm 0.8 \ ^{+2.9}_{-2.1}$
S/\sqrt{B}	15
observed events	71

- $\sigma = 21.1^{+3.1}_{-2.8}~{\rm (stat.)} \pm 1.2~{\rm (syst.)}^{+0.9}_{-0.8}~{\rm (lumi.)}~{\rm pb}$
 - NLO prediction: $17.2^{+1.2}_{-0.8}$ pb
 - measurement in agreement with prediction
 - limits on anomalous TGC have been derived
 - comparable to Tevatron limit with 1 fb⁻¹

 $ZZ \rightarrow IIII$

- Four leptons ($eeee/ee\mu\mu/\mu\mu\mu\mu$)
- Two Z with $|m_{II} m_Z| < 25$ GeV

	events
Signal (MC)	$9.1{\pm}~0.1~{\pm}~0.3$
total background	$0.3 \begin{array}{c} ^{+0.9+0.4}_{-0.3-0.3} \end{array}$
S/\sqrt{B}	16
observed events	12

- $\sigma = 8.4^{+2.7}_{-2.3}~{
 m (stat.)}^{+0.4}_{-0.7}~{
 m (syst.)} \pm 0.3~{
 m (lumi.)}~{
 m pb}$
 - NLO prediction: $6.5^{+0.3}_{-0.2}$ pb
 - measurement in agreement with prediction
 - limits on anomalous neutral TGC have been derived
 - competitive to LEP/Tevatron limits with 1 ${\rm fb}^{-1}$

2011-09-17 JPS

top

 combined cross-sections measured in di-lepton and lepton-jets channels

ع_ن [pb] NLO QCD (pp) I+iets 186 + 23 ph Approx, NNLO (pp) (35 pb⁻¹ Prelim ▲ Dilepton 171 ± 19 pb 10² Approx, NNLO (pb) (0.70 fb 1 Prelim CDF D0 22 20 18 10 F ATLAS Preliminan √s [TeV]

 precision of combined results (~10%) already close to theoretical one *m*_{top} determined with template fit using lepton-jets channel by combining 2010 and 2011 data

 σ : 176 \pm 5 (stat.) $^{+13}_{-10}$ (syst.) \pm 7(lumi.) pb

Standard Model cross-section measurements current status – ATLAS

measured/predicted cross-sections of SM processes in agreement

"Yesterday's signal is today's control sample and tomorrow's background"

· probing heavy di-boson productions, the last step before Higgs

- LHC is performing well
 - peak and integrated luminosity increasing rapidly
 - delivered 3.09 fb⁻¹, 6 weeks of *pp* runs left in 2011
- ATLAS detector is performing well
 - high data taking efficiency with high operational fraction of detector
 - recorded 2.92 fb⁻¹
 - understanding of detector and reconstruction performance is progressing
- Standard Model processes re-discovered up to di-boson processes (WW/WZ/ZZ)
 - the last step before Higgs searches
 - measurements in agrement with predictions
 - precision of measurements quickly catching up to Tevatron results
- Necessary and successfull step before discoveries
 - discovery = measurements standard model

