アトラスレベル1ミューオントリガーにおける バックグラウンドの評価とその除去

ATLAS 検出器

ATLAS トリガー

レベル1 ミューオントリガー

•バレル (|η|<1.05): RPC (Resistive Plate Chamber), 360 k ch •エンドキャップ (1.05<|η|<2.4): TGC(Thin Gap Chamber), 320 k ch,99% efficiency for 25ns gate

LHCアップグレード

	Energy (Tev)	Inst Lumi (cm ⁻² s ⁻¹)	L1_MU20 Rate (Hz)
現在 (2011)	7 TeV	2*10^33	2 KHz
デザイン値 (2014)	14 TeV	1*10^34	20 KHz
Phase-1 upgrade (2019)	14 TeV	2*10^34	40 KHz
Phase-2 upgrade(2023)	14 TeV	5*10^34	100 KHz

ATLASの各検出器はLVL1レートが75KHzまでしか運転できない設計 その中で、ミューオンへの割り当ては20KHz

→LVL1ミューオントリガーは Phase-1 upgrade でFactor 2 の レートリダクションが必要

現状の L1_MU20 トリガーのクオリティ

"L1_MU20": LVL1で20GeV以上と判断されたイベント
Offline muon:オフラインで再構成されたイベント

SWにおけるIP指向性

RolとSWの位置関係

Eta, Pt 分布

Eta, Pt 分布 (Rolマスク後)

Cut	Reduction		Efficiency	
	η >1.3	All eta	η >1.3	All eta
N_segment > 0	0.631	0.707	0.983	0.993
dθ	0.318	0.459	0.946	0.976
dθ & dL_η &dL_φ	0.136	0.315	0.923	0.966
Rol mask	0.100	0.287	0.900	0.957

Reduction vs Luminosity, Pileup

現在までの、ルミノシティ、パイルアップでリダクションをキープしている。

まとめ

Phase-1 upgradeの後、L1_MU20はリダクションファクター2 が必要
L1 MU20 の多くはフェイク

•New Small Wheelの情報を用いてフェイクレートを減らす方法考案

・以下の分布に制限

•SWにおけるIP指向性(dθ)

•SWとRolと位置関係 (dL)

・加えて

・運動量分解能の悪い部分のRolをマスク

する事で、95%以上のエフィシエンシーで目標のリダクションレートを達成する

Cut	Redu	uction	Efficiency		
	η >1.3	All eta	η >1.3	All eta	
dθ & dL	0.136	0.315	0.923	0.966	
Rol mask	0.100	0.287	0.900	0.957	

・リダクションレートはPileup, Luminosityに大きく依存しない、phase-1 upgrade 後の見 積もりが必要である