



# LHC-ATLAS実験における 二光子に崩壊するヒッグス粒子の探索 山村 大樹、田中 純一、増渕 達也、中村 浩二、浅井 祥仁<sup>A</sup>

東大素セ、東大理



日本物理学会 2011年秋季大会 16/09/2011





- Introduction
- ・背景事象 (Background)
- Event selection / Event categorization



- Background study
- Signal modeling
- ・系統誤差
- ・ヒッグス生成断面積の上限値の結果

## ◆ 今後の展望



# (i) H→γγ 解析の概要

# Introduction

#### ► H→γγの特徴

- ・崩壊分岐比は0.1-0.2%程度。
- 高い横運動量の光子を2つ持つ事象であるため、 選択効率が良く、イベントセレクション後にも 十分イベントが残ることが期待される。
- ・M(yy)分布において、鋭いシグナルピークを 観測することが可能。
- ・110<m<sub>H</sub><125GeVにおいて、最も感度が</li> 良いチャンネル。

・探索領域: 110<mн<150GeV



本talk内容

# <u>背景事象 (backgrounds)</u>

#### Irreducible background (γγ)

SMプロセスからくる di-photon事象



#### Reducible background (γ+jet, di-jet)

jet内のneutral meson( $\pi^0$ ,  $\eta$  etc.)が fake photonを作る。



**Drell-Yan (Z** $\rightarrow$ **ee)** ··· Very small contribution.

16/09/2011

# <u>液体アルゴン電磁カロリメータ</u>

<u>3 layers からなる構造</u>

• Strip (1<sup>st</sup> layer) :

Back (3<sup>rd</sup> layer)

Fine granularity in  $\eta$ 

|η|<1.8には、pre-samplerもある。</li>

• Middle (2<sup>nd</sup> layer)



日本物理学会 2011年秋季大会











# **Event selection**

```
2つの高横運動量の光子の存在を要求。( pт(γ1)>40GeV pT(γ2)>25GeV )
```



## **Event categorization**

#### イベントを以下の5つに分類する。

・Unconv/Conv
 を用いた分類。
 ・(ŋ(ɣ1), ŋ(ɣ2))

**Diphoton**の mass resolution

に応じた分類をすることで、

Significanceが上がる。

|                                                                                                                                      | Unconv/Conv | ( η(γ1), η(γ2) )               |                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|------------------------------------------------------|
| (1) Unconverted - Central                                                                                                            | Unconv      | Central                        |                                                      |
| (2) Unconverted - Rest                                                                                                               | Unconv      | Medium or<br>Transition        | ♦ (η(γ₁),η(γ₂))- plane                               |
| (3) Converted - Central                                                                                                              | Conv        | Central                        | Resolution (RMS)                                     |
| (4) Converted – Transition                                                                                                           | Conv        | Transition                     | <b>/</b> 5)                                          |
| (5) Converted - Rest                                                                                                                 | Conv        | Medium                         |                                                      |
| <ul> <li>◆ Unconv/ Conv :</li> <li>・ Unconv :</li> <li>2光子ともUnconverted。</li> <li>・ Conv :</li> <li>少なくとも一方の光子がConverted.</li> </ul> |             | Central<br>Medium<br>Transitio | on<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>1 1.5 2 2.5 |
| 16/09/2011 日本物理学                                                                                                                     |             | 】<br>☆ 2011年秋季大会               | <b>η(γ+)</b>                                         |

# (ii) H→γγ探索の結果

# **Background study**

# <u>セレクション後に得られたM(yy)分布</u> (100<M(yy)<160GeV)

まずは、event categorizationを行う前の分布を解析。



**Background modeling** 

・100-160GeV領域のM(γγ)分布を exponentialでfit。

➡ バックグラウンドレベルを決定。

・ヒッグス粒子の兆候は見えない。

# <u>各BG成分の理解</u> (BG decomposition)

H→γγ探索の最終結果には、全く使わないが、、

#### reducible BGが十分抑えられているか等をcheckできる。



# **Event categorization後のM(yy)分布**



どのcategoryでも、ヒッグス粒子の兆候は見えない。

# **シグナル(H→yy) 探索**





(i) シグナル事象数の不定性: +23%/-19%

- Theory : +20%/-15%
- photon-ID eff. :  $\pm 11\%$
- Iso-cut eff. :  $\pm 3\%$
- Luminosity :  $\pm 3.7\%$
- Trigger : ±1%
- Higgs pt modeling :  $\pm 1\%$

#### (ii) シグナルピーク幅の不定性: ±14%

- ・Cluster energy resolutionの不定性: ±12% (Constant term)
- ・Calibrationの不定性: ±6%
- Pileup : ±3%
- ・角度(位置)分解能の不定性: ±1%

#### (iii) BG modeling

 Backgroundのmodeling (function form *form form form* で仮定していること) に起因する 不定性を考慮。 ・様々な関数モデルを用いた場合で fit結果がどう変わるかをcheckし、 これをuncertainty とする。 exp[ a-bx-c·log(x)], exp[a-bx]+exp[c-dx],  $exp(a-bx) \times (c+dx+ex^2),$ exp[a-bx+cx <Result> (total sig #の不定性)  $\delta N = \pm 5$  (for 110GeV) ±3 (for 150GeV)



|                                      | Error            |
|--------------------------------------|------------------|
| シグナル事象数                              | +23%/-19%        |
| シグナルピーク幅                             | ±14%             |
| BG modeling<br>(Μγγ=110[150]<br>GeV) | ±5[±3]<br>events |

◆ ヒッグス生成断面積に対する上限値 (@95%C.L. with CLs)

- Expected :  $(3.3-5.8) \times SM$
- Observed :  $(2.0-5.8) \times SM$

# (iii) H→yy 今後の展望

#### <u>H→yy 今後の展望</u>

♦ үүチャンネルで重要となる mн region: mн=110-130GeV

#### 特にmн=110-125GeVであれば、H→γγチャンネルが

発見の決め手となるはず。



#### 今年終わりまででの展望は?

・データ量: 5fb<sup>-1</sup>程度になるみこみ。

 他のdecay channel (WW, tautau etc.)や、CMSの結果もcombine することで、low mass region(mH~120GeV etc.)でのexclusion の可能性もあり?

H→γγ 解析の今後

Exclusionやobservationの達成を早めるためにも、

今後はsensitivityの改善が非常に重要。

- ・Exclusive analysis (H+0/1/2 jets)の導入。
- MVA (Multi-Variate Analysis)

✓ photon-ID

✓  $\cos \theta^*$ や $p_T(\gamma\gamma)$ の使用  $\left[\cos \theta^*: 2$ 光子間の角度に関するパラメータ \right]

16/09/2011

## <u>まとめ</u>

## ◆ 2011年の1.08fb<sup>-1</sup>のデータを用いて、H→γγ探索を行った。

- ・探索領域: mn=110-150GeV
- ・ヒッグス粒子の兆候は見られなかった。
- ・生成断面積に対する上限値 (@95%C.L.)
  - $\checkmark$  Expected : (3.3-5.8)× SM
  - $\checkmark$  Observed : (2.0-5.8)× SM

#### ♦ H→γγ解析の今後

- ・mH=110-125GeVであれば、H→γγチャンネルが発見の決め手となるはず。
- exclusionやobservationの早期達成を目指すべく、今後は sensitivityを上げていくことが重要。
  - Exclusive analysis
  - ✓ MVA



## <u> Data および MCサンプル</u>

<Data>

 $\cdot \sqrt{s} = 7 \text{TeV}, \ 1.08 \text{fb}^{-1}$  (2011 data)

・ルミノシティの不定性は、3.7%。

<MC>

◆ シグナル (H→yy)

· ggF, VBF : PowHeg

· WH, ZH, ttH : Pythia

· 110-150GeV with 5GeV step

#### バックグラウンド

M(yy)分布をfitすることにより、BGレベルを評価できるため、基本的には

MCは不要。

但し、BGの詳細を理解するためのチェック用として、PythiaとAlpgenを使用。

<Normalization>

• ttH : Using NLO

• ggF, VBF, WH, ZH : Using NNLO

# Photon rec., ID and isolation cut

Longitudinal segmentation : Energy reconstruction

Photon Cluster based on 3x5 (unconverted γ) and 3x7 (converted γ) - for barrel photons -



#### $\pi^0$ - $\gamma$ Rejection



Lateral segmentation :

- Shower shape variable in S2
- Fine S1 granularity ~0.003 in pseudo rapidity
- Excellent γ-π<sup>0</sup> rejection
- Simple cuts technique
- Photon isolation :
- Calorimeter based (0.4 cone)
- Out-of-(inner)-cone leakage corrections
- Underlying event and pile-up (PU) correction event based (using a Jet-Area type of algorithm)

4



