ATLAS実験シリコンストリップ飛跡検出器の ローレンツ角による性能評価

陣内 修、東城 順治^D、池上 陽一^D、海野 義信^D、木村 直樹^F、近藤 敬比古^D、高嶋 隆一^C、 寺田 進^D、永井 康一^E、中野 逸夫^B、花垣 和則^A、原 和彦^E、寄田 浩平^F 東エ大、A:阪大、B:岡山大、C:京都教育大、D:高エ研、E:筑波大、F:早大理工研、他アトラスSCTグループ

日本物理学会 2011年秋季大会 16aSE-06

1. イントロダクション ー LHC / ATLAS ー

- LHC (Large Hadron Collider):
 - 2009年11月初ビーム衝突観測

衝突粒子	陽子一陽子	Pb — Pb
重心系エネルギー	7 [TeV]	2.76 [TeV]
積分ルミノシティ	2.59 [fb ⁻¹]	9.2 [μb ⁻¹]
瞬間最高ルミノシティ	2.72·10 ³³ [cm ⁻² s ⁻¹] (2011/09/09現在)	3.0·10 ²⁵ [cm ⁻² s ⁻¹]

- ATLAS (A Toroidal LHC ApparatuS)
 - Higgs, SUSY, 余剰次元など 様々な新物理の実験的観測を目指す汎用検出器
 - ソレノイド・トロイド磁石によりレプトンの検出に注力
 - 主な検出器: 内部飛跡検出器・カロリメータ・ミューオンスペクトロメータ

Semi-Conductor Tracker(SCT)・・・ バレル部: 4層 エンドキャップ部: 9層

2010年のSCT の検出効率は99.89%(バレル部平均)であった。

→データ取得時のSCTセンサーの位置補正は数µmオーダーでうまくいっている。

2. ローレンツ角

ローレンツ角・・・電荷収集の際、ローレンツカによってホールの移動方向が曲げられた角度 $F = q(E + v \times B)$

2. ローレンツ角

ローレンツ角・・・電荷収集の際、ローレンツカによってホールの移動方向が曲げられた角度 $F = q(E + v \times B)$

2. ローレンツ角

2. ローレンツ角

2. ローレンツ角

2. ローレンツ角

ローレンツ角入射の飛跡はクラスターサイズが最小になることを利用

上式:

角度φで入射したトラックに対してクラスターサイズを再現する式 ガウシアンは、収集される電荷の拡散の効果を考慮

ローレンツ角は磁場や電場、温度で値が変わるため、検出器の状態を反映

ローレンツ角をモニターすることで異常検知の一つの指標になる

2. ローレンツ角 ー SCTの放射線損傷モニター

ローレンツ角はSCT内の磁場、電場から以下のような関係式が成り立つ

$$\tan \phi_L = \mu_H B = r \mu_d B \qquad \mu_d = \frac{\nu_s / E_c}{[1 + (E/E_c)^\beta]^{1/\beta}} \qquad \sum_{e_c (V \text{ cm}^{-1}) \atop \beta}$$

s^{-1})	$1.53\cdot 10^9\cdot T^{-0.87}$	$1.62\cdot 10^8\cdot T^{-0.52}$
$m^{-1})$	$1.01\cdot T^{1.55}$	$1.24\cdot T^{1.68}$
	$2.57\cdot 10^{-2}\cdot T^{0.66}$	$0.46\cdot T^{0.17}$
	$1.13 + 0.0008 \cdot (T - 273)$	$0.72 - 0.0005 \cdot (T - 273)$

Holes

Electrons

半導体内のdrift mobility(µd)は、アクセプタンス濃度の変化に影響を受ける

2011/9/16

SCTでの飛跡再構成・SCTの状態を保証するために ローレンツ角をモニターする

- ATLASのデータベースに各Run毎のローレンツ角・ 最小クラスターサイズを(半)自動でuploadできるようにした
- ローレンツ角・最小クラスターサイズのモニターが容易に

3.2011年のローレンツ角推移 ートラックセレクション -

以下の条件をトラックに課した。 上の5つはATLASのトラックの選別で一般に用いられているものである。

	•	Pt > 500 MeV	Pt:横方向運動量	d _o :
	•	d0 < 1 mm z0*sin(theta) < 1 mm	trackとvertexの最接近距離	track
	•	#SCTHits > 6(8枚中) #pixelHits > 1(3枚中)	ヒットのあったSCT, Pixelの数	vertex d ₀
	•	Charge < 0		
S 傾口	CTに - - にて ーレ 1	は中心方向に 11°(Layer0,1)、 11.25°(Layer2,3) こいるため、負の電荷のトラックが シツ角は垂直方向に近いため、 負の電荷のトラックがローレンツ	がSCTに垂直に入りやすい。 角を構成する主なものである。	11.0°
				-0.5GeV/c

IP

ローレンツ角のベースラインは変動していない → 今後もモニターしていく

ビームラインに近い層ほどローレンツ角が大きく出ている → 現在調査中

日本物理学会 2011年秋季大会 16aSE-06

最小クラスターサイズは、ビームラインに近い層ほど上昇傾向にある → 現在調査中

まとめと展望

- ATLAS-SCTの飛跡再構成にはローレンツ角・クラスターサイズが重要
- ローレンツ角は検出器内の状態で値が変化する
- 長期モニタリングに向けてATLASデータベースに ローレンツ角・最小クラスターサイズが自動的にあがるように更新 最近2ヶ月の
- ローレンツ角は、
 - ベースラインは安定している
 - 内層ほど値は大きい
- ・最小クラスターサイズは、
 - 内層で上昇が見られる

今後

- ローレンツ角の推移と検出器の状態の関係を把握
- 長期に渡るモニタリングを行う

BackUp

半導体検出器の原理

日本物理学会 2011年秋季大会 16aSE-06

日本物理学会 2011年秋季大会 16aSE-06

ー安定した長期稼働に向けて –

• 積分ルミノシティ

これだけのデータを余すこと無く測定したい

SCTで安定したオペレーションを行うために → 磁場と電場の変化に敏感なローレンツ角で 検出器の異常を検知できないか 16 日本物理学会 2011年秋季大会 16aSE-06

1019

1015

10¹⁶

1017

ACCEPTOR CONCENTRATION (cm⁻³)

1018

日本物理学会 2011年秋季大会 16aSE-06

Mobility Irradiation dependence

Silicon, room temperature

R. Wunstorf, PhD thesis 1992, Uni Hamburg

5000

1000

500

100

50

 $^{10}_{5}$

 10^{-1}

 U_{dep} [V] (d = 300 µm)

SCTではLHC稼働10年間で2x10¹⁴ cm²の1 MeV の中性子通過と同等

モジュールの温度(≠センサー温度)

2011/9/16

$$\tan \Theta_L = \mu_H B = r \mu_d B$$
 $\mu_d = \frac{v_s / E_c}{[1 + (E/E_c)^{\beta}]^{1/\beta}}$

電子1個の運動について
$$\begin{cases} m \frac{dv_s}{dt} = e(\mathbf{E} + \mathbf{v}_s \times \mathbf{H}/c) \\ \mathbf{I} = (e/V)v_s \end{cases}$$

$$\frac{dI}{dt} = (e^2/m)[(E/v) + (I \times H/ec)]$$
$$dI = \left\{ \left(\frac{e^2}{m}\right) \left[\left(\frac{E}{v}\right) + \left(I \times \frac{H}{ec}\right) \right] \right\} dt$$

電子N個の系では

$$dI = \Sigma_i dI_i = \left\{ \left(\frac{e^2}{m} \right) \left[\left(\frac{E}{v} \right) + \left(I \times \frac{H}{ec} \right) \right] \right\} dI$$

衝突による変化は、

$$dI = -I dt / \tau$$

$$I = (ne^2 \tau / m)E - I \times H(e\tau / mc)$$

I: x-axis, H: z-axis のとき

$$\begin{cases} I_x = (ne^2\tau/m)E_x = \sigma E_x\\ 0 = \sigma E_y - (I_xH_z)(e\tau/mc) \end{cases}$$
$$\begin{cases} E_x = I_x / \left(\frac{ne^2\tau}{m}\right) = I_x / \sigma\\ E_y = -(I_x/\sigma)(e\tau H_z/mc) \end{cases}$$
$$\tan \theta = E_y / E_x = e\tau H_z / mc = \mu H_z / c \end{cases}$$

/ m

雨フェ四のズイは