

HL-LHC実験に用いる プラナー型ピクセルセンサーの 放射線耐性と検出器性能評価

東京工業大学 基礎物理学専攻 永井遼

陣内修,海野義信^A,田窪洋介^A,池上陽一^A,木村直樹^F,近藤敬比古^A, 高嶋隆一^D,東城順治^A,寺田進^A,永井康一^E,中野逸夫^C, 花垣和則^B,原和彦^E,寄田浩平^F

東エ大, 高エ研^A, 阪大^B、岡山大^C, 京都教育大^D, 筑波大^E, 早大理工研^F, 他 PPS testbeam コラボレーション

ATLASピクセル検出器

Pixel

- ATLAS Pixel
 - 最内層飛跡検出器(現在3層)
 - 50 × 400 μm²のピクセルサイズ
 - ToT (Time over Threshold)による*dE*/*dx*測定

LHCアップグレード計画

ATLASピクセル検出器アップグレード

- LHCアップグレード(HL-LHC, 2022)
 - 瞬間ルミノシティ: $10^{34} \rightarrow 5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} 5$ 倍!
 - 積分ルミノシティ: 350 → 3000 fb⁻¹ 10倍!
 - 粒子密度の上昇、放射線環境の激化
 - 現ピクセル検出器での検出は難しい

- ピクセル検出器アップグレード計画
 - 放射化対応、高密度下での精細な検出を目指す

プラナー型n-in-pセンサー

- バルク型変換なし →
 (放射化による n型 → p型 変換がない)
- PN接合は読み出し側 →
- 表面加工片側だけ →

全空乏化でなくとも検出可能! コスト削減!

従来型(プラナー型n-in-n)から変えるメリットは大きい

使用センサー

- 浜松ホトニクス製プラナー型n-in-pセンサー (320 µm厚)
 - 現ATLAS標準読み出しチップ(FE-I3)搭載
 - 2010.10に未照射状態でビームテスト
 - $1.1 \times 10^{15} n_{eq}$ / cm² 照射済(@CYRIC, 2011.02)
 - P-stop common, PolySilicon バイアス抵抗
 - P-stop individual, PolySilicon バイアス抵抗
- ビームテストにより、
 これらの違いを考察

日本物理学会秋季大会2011 / 永井遼

2011/9/16

ビームテスト@CERN

- 2011.07.13—28 CERN Prevessin site
- 120 GeV π⁺ビーム (SPS)
 - 平均トリガーレート:650 Hz
 - 照射前での試験と同様のセットアップ

- 使用センサー
 - 浜松ホトニクス製n-in-pセンサー(放射化後):2台
 - その他
 - 浜松ホトニクス製n-in-pセンサー(未照射):4台
 - ・ドルトムント工科大放射化後センサー:4台
 - IBL用センサー:5台
 - ・マックスプランク研究所:7台

[ATLAS PPS testbeam コラボレーション Jens Weingarten, et al.]

セットアップ、解析手法

- 収集電荷量
- 検出効率
- を照射前後で比較

構造上の違いを踏まえ、 センサーの性質を調べた

使用テレスコープ"EUDET" http://www.eudet.org/e26/

- Read out speed: 100 µs
- Resolution: < 3 µm

 今回のセンサーでの照射前後の収集の違い - 但し、値は2サンプルの平均値

25000

- 放射化後は収集 量が落ちている
- 完全空乏化 400-500Vと推定
- 低バイアス電圧で 検出できている!

落ち方は適切か?

Charge [e] 照射前 20000 照射後 15000 10000 5000 0₀ 100 200 300 500 600 700 400 Bias Voltage [V]

放射化による収集電荷量の変化

今回の結果と
 他のデータとの
 比較

この振舞と酷似

A. Affolder, et al. "Charge collection efficiencies of planar silicon detectors after reactor neutron and proton doses up to 1.6×10^{16} neq cm⁻² " (2009)

検出効率の比較

- 1ピクセル内の検出効率を、以下で比較
 照射前後
 - 2サンプル(P-stop common & individual)
 - → ピクセル表面構造による違いを調べる
- 検出効率の計算法
 - 1トラックに対して、どの範囲までをヒットとして認めるか x方向:800 µm, y方向:100 µm の幅で許容(2ピクセル分)

1チップ検出効率の比較

- ・ 再構成したトラックと検出器の ヒット情報をもとに、 検出効率を計算
 - 上部の白い領域:
 トリガーをかけていない
 - 左右1ピクセル、上下10ピクセル: アライメントの都合でカット

10

12

14

16

20

6 18 Column 0.2

0.1

1ピクセル検出効率の比較

- ・
 か射化により、
 "バンド"が発生
 - Individualでは照射前でも発生している。
 - 構造上の問題?

この問題解明が鍵

1ピクセル検出効率の比較

- ・
 か射化により、
 ["]バンド"
 が発生
 - Individualでは照射前でも発生している。
 - 構造上の問題?

この問題解明が鍵

まとめ

- ATLASピクセル検出器アップグレードに向けて、
 シリコンセンサーの開発を行っている
- 今回作製したセンサーを放射線照射前後で2回のビームテストにかけ、読み出し試験を行った
- 収集電荷量は照射後センサーでは減少したが、
 - 低バイアス電圧で十分検出することが示せた
 - 放射化による影響を調べた他のデータと一致する結果となった
- これをもとに照射前後での検出効率を求め、比較した
 - 放射化後に"バンド"が現れる
 - 表面構造による違いがありそう

→ 今後、究明していく