LHC-ATLAS実験における モノジェット事象の探索

<u>風間慎吾</u>,金谷奈央子^A,寺師弘二^A 浅井祥仁,小林富雄^A

東大理,東大素セペ

日本物理学会年次大会@新潟大学

◆n=2 : R ~ 100µm ^{(Eöt-Wash}実験の範囲 M_{pl}(n+4)>3.2TeV

◆n>=3:<u>加速器実験</u>での探索が有効

$$R\sim 10^{30/n-17} cm$$

1.Kaluza-Klein(KK) Gravitonの実生成 2.SM粒子間の仮想KKGravitonの交換

<u>1.大きな余剰次元模型:LHCでのシグナル</u>

<u>LHCでのKK Gravitonの生成はモノジェットとして見える</u>

<u>探索すべきは、モノジェットとMissingEtがback-to-backに観測される事象</u>

1.大きな余剰次元模型:現在までのリミット

●加速器実験からの制限

95%CL lower limit on $M_{pl}(n+4)$ (γ ,or jet+MissingEt combined)

n	95%CL lower limits on M _{pl} (n +4)
2	1.40TeV
3	1.15TeV
4	1.04TeV
5	0.98TeV
6	0.94TeV

●重力の逆二乗則からのズレの探索からの制限(Eot-Washグループ)

n	95%CL lower limits on M _{pl} (n+4)
2	3.2TeV

2.実験データ,シミュレーション,サンプルに関して(1/2)

KKgraviton(シグナル)サンプル
M_{pl}(n+4) =1.1TeV~3.0TeV
余剰次元の数n=2,3,4,5,6(合計約100点、各2.0×10⁵イベント生成)
GeneratorとしてはExoGravitonを使用
M_{pl}(n+4) =1.5TeV, 2.0TeV, 3.0TeVはFullサンプルが存在し、その他は、
Geant4ベースのfull simulationではなく、fast simulationを使用
(ただし、full simulationの結果を再現するようtuneされたfast simulation使用)

	Xsec@(n=3,Mpl(n+4)=1.5TeV)	
qg	31.6pb	- 非常に大きな生成断面積
gg	23.0pb	<u>を持つ(~O(100)pb)</u>
qqbar	4.6pb	5

2.実験データ,シミュレーション,サンプルに関して(2/2)

バックグラウンドは全てFullシミュレーションを用いて評価した

Main Background	Event Generator	Cross section (pb)	イベント数
Z→vv	Alpgen	5800	1×10 ⁵
W→Iv	Alpgen	31000	6×10 ⁶
QCD	Pythia	~10 ¹⁰	1×10 ⁷
ttbar	MC@NLO	160	9×10 ⁵
Z→II	Alpgen	3200	1×10 ⁶

Z→vvはシグナルと同じトポロジーのため、 最大のバックグラウンドとなる。 W→lvはleptonのIDに失敗するとシグナル と同じトポロジーとなる。

3.1.解析:Event Cleaning

Non-collision起源のイベント(Noise,Cosmics,BeamHaloはバランスせず、MissingEt分布にテールを作る。特にCosmics起源のイベントは偽のmono-jet事象を作ってしまう

1. HEC(Hadron EndCap) noise

2. LAr coherent noise

cosmic muonがハドロンカロリメータで 制動放射を起こしてhigh pT jetを作り、あ たかもmono-jet事象の様に振る舞う (100GeV以上のJetを作るレート~0.1Hz)

クラスターにassociateしているtrackがないこ と、さらには電磁カロリメータで測定されたエ ネルギーの割合が低いことに着目して落とせる

4. Beam Halo

5.Event Cleaning前後のMissingEt分布

<u>3.2.解析:Event Selection</u>

<u>3.2.解析:Event Selection: MissingEt & 1st jet</u>

<u>3.2.解析:Event Selection: 2nd jet cut</u>

ISRやFSRの効果でシグナルは2nd jet を多く持つ。ただし、QCDを落 とすため2nd jet pt<60GeV, Δφ(2nd jet ,MissingEt)>0.5を要求

<u>3.2.解析:Event Selection:全てのセレクション後の分布</u>

<u>データと標準理論からの予言は合っ</u> ており、超過は見られない

3.3.解析:Background estimation

<u>バックグラウンドの評価法(MC法)</u>

● MCと実験データの分布の形は合っていると仮定し、それぞれのバックグラウンドがエンハンスされる領域を選んでMCをデータに規格化し、その規格化係数(スケールファクター)を求める。

例えば、Wボソンバックグラウンドのスケールファクターは、

$$\frac{N_{Data} - (N_{QCD,MC} + N_{Z,MC} + N_{ttbar,MC})}{N_{W,MC}}$$

●スケールファクターを実際のEvent selection後に残るMC のバックグラウンド に適用させる。前ページまでのグラフには全てこのスケールファクターが適用され ている。

*)ttbar事象は実験データの統計が少ないため、理論値で規格化している

<u>3.3.解析:Background estimation of W → v</u> Wボソン崩壊事象のエンハンスにTransverse mass(M_T)を用いる <u>40GeV < M_T < 100GeVを選択</u>

electron channel

<u>muon channel</u>

<u>モノジェットのトポロジーになるべく近くなるように評価するため、</u> High pT モノジェット + 大きなMissing<u>Etを要求する</u>

1. Number of lepton = 1 2. $40\text{GeV} < M_T < 100\text{GeV}$ 3. Number of jet = 1 4. MissingEt>100GeV & pT>100GeV

3.3.解析:Background estimation of Z→II Zボソン崩壊事象のエンハンスには、2つのleptonの不変質量M_{II}を用いる <u>71GeV < M_{II} < 111GeVを選択</u>

electron channel

muon channel

モノジェットのトポロジーになるべく近くなるように評価するため、

<u>High pT モノジェット + 大きなMissingEtを要求する</u>

- 1. Number of opposite sign , same flavor lepton = 2
- 2. 71GeV < M_{\parallel} < 111GeV
- 3. Number of jet = 1

4. MissingEt>100GeV & pT>100GeV

Scale Factor Zee,Ztautau $\rightarrow 0.99 \pm 0.18$ Zmumu $\rightarrow 0.85 \pm 0.18$

<u>3.3.解析:Background estimation of QCD</u>

<u>3.4.解析: Background estimation:カットフロー</u>

	Data	All BG	Z+jets	W + jets	QCD	ttbar	KKgraviton n=6, Mpl(n+4)=1.5TeV
mET>220GeV	268	245.3	78.0	72.5	83.0	11.8	113.7
Leading jet's pt>250GeV & eta <2.0	172	154.4	38.0	40.2	71.5	4.7	77.6
ΔΦ(MissingEt , 2nd jet) >0.5	77	71.7	34.6	28.3	5.8	3.0	71.1
2 nd jet pT <60GeV	46	42.4	24.4	17.6	0.12	0.31	34.7
Number of jets<=2	39	37.7 ±2.7(stat.)	22.5 ±2.3(stat.)	15.1 ±1.4(stat.)	0.08 ±0.08(stat.)	0.13 ±0.02(stat.)	31.2 ±0.6(stat.)

QCDは不定性が大きいが、最終結果には効かない。

<u>標準理論からの予言と実験データはコンシステント</u>

3.5.解析:系統誤差

<u>シグナル</u>

	系統誤差
Renormalization/Factorizationスケール	11%
ISR/FSR	12%
PDF	5%
Jet Energy Scale	10%
Jet Energy Resolution	~0%

	系統誤差
Luminosity	11%
Pile Up	3%

W/Zボソン崩壊事象

	系統誤差	
Renormalization/Factorizationスケール	15%	Luminosity
ISR/FSR	10%	Pile Up
PDF	5%	Lepton reconstruction efficiency
Jet Energy Scale	10%	
Jet Energy Resolution	1.7%	

系統誤差

11%

1%

<1%

<u>4. 結果:Observed Limit on Mpl(n+4)</u> 標準理論からの予言と実験データはコンシステントであり、実験データに 有意な超過は見られなかった

真のプランクスケールM_{pl}(n+4)に対して95% CLs lower limit を求めた (統計誤差、系統誤差を含む)

n	95% CLs lower limits on M _{pl} (n+4)
2	2.39TeV
3	2.00TeV
4	1.85TeV
5	1.78TeV
6	1.75TeV

Number of Extra Dimensions

余剰次元の数n>=2の場合に於いて、これまでの加速器実験 の結果を大幅に上回る結果を得る事が出来た

<u>4. 結果:EventDisplay</u>

mET	413GeV
1 st jet pT	350GeV
$\Delta \Phi$ (jet , mET)	3.1

Z→vv事象だと思われる

- ●階層性問題を解決する大きな余剰次元模型では、LHC-ATLAS実験において "モノジェット+MissingEt"事象の生成が予想される
- ●約34.6pb⁻¹のLuminosityの実験データでモノジェット事象の探索を行った
- ●non-collision起源(Cosmicsなど)を除くCleaningを行った
- ●バックグラウンドをモンテカルロとデータを用いて評価し(MC法)、 モノジェット探索に最適化したカットを掛けた
- ●実験データと標準理論からの予言はコンシステントであり、真のプランク スケールに対して、**これまでの加速器実験を越えた新たな制限を得た**。

余剰次元の数	2	3	4	5	6
Limit	2.39TeV	2.00TeV	1.85TeV	1.78TeV	1.75TeV