LHC-ATLAS実験における 2レプトンモードを用いた 超対称性粒子の探索

東大理,東大素^A 田中薫,金谷奈央子^A 浅井祥二,小林富雄^A 日本物理学会 第66回春季大会 2011/3/26

アウトライン

- 1. イントロダクション
- 2. データ・モンテカルロ サンプル
- ・3. バックグラウンドの評価
- 4. 事象選択
- 5. 解析

- エレクトロン チャンネル - ミューオン チャンネル

- 6. 考察と結果
- 7.サマリーと展望

1. イントロダクション LHCにおけるSUSYのイベントトポロジー 1,グルイーノ,スクォーク生成 2,ニュートラリーノは検出されない為 終状態は マルチジェット + 横方向エネルギー損失

マルチジェット+MET→SUSY発見の為のトポロジー 更に終状態に2レプトンを要求する。 0-レプトンや1-レプトンモードに比べて、 統計が少なくなるという欠点が存在するが、

 $\tilde{q}_{L} \rightarrow \tilde{\chi}_{2}^{0} \rightarrow \tilde{l}_{1} \rightarrow \tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow \chi_{1}^{-} \rightarrow W + \tilde{\chi}_{1}^{0}$

ー方で、QCDはもちろんW(Inu)+jetsのBG(バックグラウンド)も落とす事が出来る為、 スタンダードモデルの多くのBGを落とす事が出来る極めてクリーンなモードである事 が分かる。

本発表は2レプトンを含むマルチジェット+エネルギー損失 終状態でのSUSYの探索について述べる。

2.データ・モンテカルロ サンプル

• Data

2010年までにアトラスで取得した35pb⁻¹

• Monte Calro (MC) Sample (SM BG and SUSY signal)

Sample	Cross-section	Generator
QCD dijet	1.05e7 nb	ΡΥΤΗΙΑ
W + jets	31.4 nb	ALPGEN + JIMMY
$Z/\gamma^*(\rightarrow II) + jets$	3.20 nb	ALPGEN + JIMMY
ttbar	161 pb	MC@NLO
di-boson	7.10 pb	ALPGEN + JIMMY
SU4(SUSY signal)	41.5 pb	Herwig++

全てのバックグラウンドはMCを使って推定した

SU4OParameter m₀ = 200GeV/c² , m_{1/2} = 160GeV/c², tan β = 10, A₀ = -400GeV, sign(μ) = +

3.バックグラウンドの評価

• Z(II)+jets バックグラウンド

Z(II)+jetsをenhanceさせたコントロール領域で規格化。 MCで予言される分布を信じてシグナル領域へ外挿する。

事象選択 2レプトン CUT Lepton p_T> {20GeV,10GeV} 2-Jet p_T> {30GeV,20GeV} MET < 40GeV |M_{II}-M_Z <5GeV

その他のバックグラウンド
 その他のBGに関しては規格化、分布ともにMCと検出器シミュレーションを信じる。

特にフェイクレプトン起源のバックグラウンドはデータを使って評価するべきで あり、これは今後の課題である。

*M₁₁:2つのレプトンを組んだ不変質量

ee channel	Data	BG	QCD	W	Z	ttbar	Dibosons	SU4
LeptonPt>20GeV	(1.44e +-				1.1e+04 +-			
10GeV	0.012)e+04	1.38e+04 +- 51	2.56e+03 +- 39	215 +- 6	32	41.7 +- 0.4	25.7 +- 0.2	23 +- 1
Jet Pt >30GeV	(8.13 +- 0.09)e				7.31e+03 +-			
20GeV	+03	8.57e+03 +- 37	1.19e+03 +- 26	25.5 +- 2.0	26	26.2 +- 0.3	16.7 +- 0.1	14.9 +- 0.8
MET <40 GeV	593 +- 24	565 +- 11	159 +- 10	1.15 +- 0.30	395 +- 6	5.5 +- 0.1	4.49 +- 0.05	1.29 +- 0.2 3
M _µ −M ₇ < 5GeV	284 +- 17	274 +- 4.95	1.17 +- 0.83	0.083 +- 0.083	269 +- 5	0.285 +- 0.030	2.94 +- 0.04	0.166 +- 0.083

mumu channel	Data	BG	QCD	w	z	ttbar	Dibosons	SU4
LeptonPt>20GeV	(1.43 +- 0.01)	(1.64 + 0.02) + 04	(1.97 +- 0.27)e	0.10 + 1.07	1.44e+04 +-	275,02		00.0 + 1.0
lugev	(1.43 +- 0.01)	(1.04 +- 0.03)e+04	(1.97 +- 0.27)e	8.13 +- 1.07	1.44e+04 +-	37.5 +- 0.3	30.5 +- 0.2	22.2 +- 1.0
JetPt>30GeV 20GeV	e+04	(1.64 +- 0.03)e+04	+03	8.13 +- 1.07	37	37.5 +- 0.3	30.5 +- 0.2	22.2 +- 1.0
MET <40GeV	921 +- 30	995 +- 59	261 +- 58	0.519 +- 0.188	718 +- 8	6.94 +- 0.15	8.12 +- 0.07	1.66 +- 0.26
M _µ −M _z <5GeV	506 +- 23	514 +- 7	0 +- 0	0 +- 0	508 +- 7	0.352 +- 0.033	5.73 +- 0.05	0.083 +- 0.059

4. 事象選択(2レプトン)

- •Pre-selection (event cleaning)
- at least two leptons
- •Lepton $p_T > \{20GeV, 10 GeV\}$
- •M_{||} > 40 GeV
- •at least two jets $p_T > \{30GeV, 20 GeV\}$
- •MET > 100 GeV
- SS(same sign)
 OS(opposite sign)

・解析するチャンネル(2レプトン) di-electronとdi-muon各々のチャンネルにおいて OS/SSに分けてデータとSM BGの比較を行う。 それ故、以下の4チャンネルの解析を行った。 (1) OS di-electron (2) SS di-electron (3) OS di-muon (4) SS di-muon

*なお、electron-muon channelに関しては現在研究中である。

(1)at least two leptons (2)Lepton $p_T > \{20GeV, 10 GeV\}$ (3) $M_{\parallel} > 40 GeV$ (4)at least two jets $p_T > \{30GeV, 20 GeV\}$ (5)MET > 100 GeV (6)SS/OS

CUT FLOW

ee channel	Data	BG	QCD	w	z	ttbar	Dibosons	SU4
LeptonPt>20GeV	0.145+02	0.00-100 1 00	1.19e+03 +-		7 60 - 100 1 07		160 - 01	15.1 . 0.0
	8.14E+03	8.890+03 +- 38	20	25.5 +- 2.0	7.03e+03 +- 27	20.4 +- 0.3	10.9 +- 0.1	15.1 +- 0.8
Mll>40GeV	7.31E+03	7.78e+03 +- 30	297 +- 13	17.7 +- 1.7	7.43e+03 +- 27	21.6 +- 0.3	15.6 +- 0.1	9.11 +- 0.62
JetPt>30GeV 20GeV	496	456 +- 7	21.1 +- 3.5	2.4 +- 0.5	409 +- 6	18.6 +- 0.2	5.01 +- 0.06	8.27 +- 0.59
MET>100GeV	6	4.12 +- 0.22	0 +- 0	0.083 +- 0.083	0.374 +- 0.171	3.57 +- 0.11	0.0932 +- 0.0104	5.16 +- 0.46
							0.00701	
SS	0	0.274 +- 0.029	0 +- 0	0 +- 0	0 +- 0	0.267 +- 0.029	0.00781 +-	1.66 +- 0.26
							0.0854 +-	
OS	6	3.85 +- 0.22	0 +- 0	0.083 +- 0.083	0.374 +- 0.171	3.3 +- 0.1	0.0101	3.49 +- 0.38

10⁻³

[GeV]

CUT FLOW

mumu channel	Data	BG	QCD	w	z	ttbar	Dibosons	SU4
LeptonPt>20GeV			1.97e+03 +-					
10GeV	1.43E+04	1.63e+04 +- 274	272	8.13 +- 1.07	1.42e+04 +- 37	37.6 +- 0.3	30.6 +- 0.2	22.4 +- 1.0
MII>40GeV	1.31E+04	1.4e+04 +- 108	216 +- 102	5.91 +- 0.91	1.37e+04 +- 36	31.1 +- 0.31	28.0 +- 0.1	14.3 +- 0.8
			0.147 +-					
JetPt>30GeV 20GeV	798	734 +- 8	0.147	0.97 +- 0.26	697 +- 8	26.5 +- 0.3	8.96 +- 0.08	12.2 +- 0.7
MET>100GeV	6	6.16 +- 0.24	0 +- 0	0.0168 +- 0.0168	0.544 +- 0.204	5.43 +- 0.13	0.177 +- 0.016	7.95 +- 0.57
						0.0463 +-	0.0103 +-	
SS	0	0.0734 +- 0.0208	0 +- 0	0.0168 +- 0.0168	0 +- 0	0.0119	0.0027	1.86 +- 0.28
os	6	6.09 +- 0.24	0 +- 0	0 +- 0	0.544 +- 0.204	5.38 +- 0.13	0.167 +- 0.016	6.08 +- 0.50

6. 考察と結果1

2レプトンを要求した際の主なBackground

*OS

ttbar (83%):両方がleptonic崩壊する事でMET+2Lepton(OS)

Z(II) +jets(9%):Same flavor 2 leptons(OS) に崩壊する。

分解能が原因でJet等のEnergyが低く見積もられ、MET生じる可能性がある

Others(8%)

*SS

ttbar(90%):片方がleptonic崩壊し、もう片方ががhadronic崩壊する事でbblnqqとなる Jetがfakeレプトンとして観測し、SSで見える) Others(10%)

解析結果より

- エレクトロン チャンネル
 SS: DataとBGで良い一致がみられる。
 OS: Dataの方がBGに比べて若干多くみえる、原因に関しては現在スタディ中。
- ミューオン チャンネル
 SS、OS各々に対してDataとBGで良い一致がみられる

以上の結果をまとめると以下の様になる

	ee(OS)	ee(SS)	mumu(OS)	mumu(SS)
Data	6	0	6	0
BG	3.85 +- 0.22	0.274 +- 0.029	6.09 +- 0.24	0.073 +- 0.021
SU4	3.49 +- 0.38	1.66 +- 0.27	6.08 +- 0.50	1.86 +- 0.28
				(統計エラーのみ)

4つ全てのチャンネルにおいて、推定されるSM BGからの超過は見られなかった。 系統誤差に関しては現在スタディ中である

課題

ここまで事象数に対して示してきたが、以下の様な大きな課題が残っている。 MET分布において30~50GeV付近でデータとMCで大きなずれ 以上を踏まえた上で、MET>100GeVのカットでttbarが優位な事から 現段階ではデータとMCで厳密に比較する事はできない。

7. サマリーと展望

サマリー

- 1.35pb-1のDataを用いたSUSY探索を2レプトンモードで行った。
- 2. MCは分布の形を信用し、Zをenhanceさせたコントロール リージョンで規格化を合わせた。
- 3.METの分布から、30~50GeV付近で、データとMCにずれが 生じており、この課題を研究を続けていく中で解決する必 要がある。

展望

- 1. データを用いたレプトンフェイク起源のバックグラウンド推定。
- 2. バックグラウンドに対する系統誤差の評価。
- 3. シグナルの系統誤差も正しく考慮した上で特定のモデル において実験結果を解釈。