ATLAS実験における

bクォークを含むdijet終状態を用いた超対称性事象の探索

大阪	大学
目黒	立真

LHC, ATLAS

LHC

重心系エネルギー:7TeV

陽子陽子衝突型加速器

積分ルミノシティー (2010年末まで):~45 pb-1

ATLAS: 汎用検出器

超対称性(SUSY)事象の探索が目的の一つ

Introduction

SUSYの特徴

- 階層性問題を解決、冷たいダークマター候補を持つ等の利点
- 質量はO(TeV)と予想→LHCで発見可能!

SUSYの特徴(実験的側面)

- 終状態に安定なLightest Super Particle (LSP) (R-parity保存を仮定)

→大きな消失運動量(E^{-miss})

- 第三世代の超対称性粒子が軽く、多く生成される

→終状態にボトムジェット(b-jet)

- 終状態は様々なパラメータに依存

例)ml/2とm0の関係がジェット数に影響する(in mSUGRA)

ジェット数 少ない:本講演 (ex.m_{1/2}>m₀の場合)

ジェット数 多い : 26aGB-6 (ex.m_{1/2}<m₀の場合)

本研究の目的

- ・大きな消失運動量(Ermiss)
- ・終状態にボトムジェット(b-jet)
- ・ジェット数 少ない : ジェット数=2

これらの特徴を活かしSUSY事象の探索を行う

Data と MC

DATA

- ATLAS実験 2010年データ
- 積分ルミノシティー: 35 pb⁻¹

MC

主な背景事象 : QCD, W, Z, top

シグナル事象 :Ď対生成 Ď→b+χ̃⁰1

(Br:~100%, Ď, x̃º1以外のSUSY粒子質量>1 TeV)

Data と MC

DATA

- ATLAS実験 2010年データ
- 積分ルミノシティー: 35 pb⁻¹

MC

主な背景事象 : QCD, W, Z, top

シグナル事象:b̈́対生成 b̈→b+χ̃⁰₁

(Br:~100%, Ď, x̂⁰₁以外のSUSY粒子質量>1 TeV)

PreSelection:

- I, トリガー,ノイズ事象除去
- 2, Lepton veto (>10 GeV)
- 3, $E_T^{miss} > 100 \text{ GeV}$
- 4, IstJet $P_T > 120 \text{ GeV}$, 2ndJet $P_T > 50 \text{ GeV}$

<u>dijet事象を選択</u> ⇒Njetの大きいtop事象を効率良く除去

•事象選択後に期待される事象数の見積り

	QCD	W	Z	top	bkg合計	シグナル
Expected Yields	0.023	10.9	13.4	13.4	37.7	16.4 ± 3.3
Data Driven	< 0.68	_	_	_	_	_

•事象選択後に期待される事象数の不確かさと測定結果

•事象選択後に期待される事象数の見積り

	QCD	W	Z	top	bkg合計	シグナル
Expected Yields	0.023	10.9	13.4	13.4	37.7	16.4 ± 3.3
Data Driven	< 0.68			—	—	—

•事象選択後に期待される事象数の不確かさと測定結果

Data MC	35 37.7	全ての事象選択後のE ^{miss} 分布
stat. uncertainty	5.9	- Vi work-in-progress Monte Carlo -
MC stat.	5.5	
JetEnergyScale	12.5	Data:35事象
JetEnergyResolusion	3.8	MC : 37.7 ± 5.9(stat.) ± 20.9(syst.)
b-jet同定	11.5	→No excess
theory	10.2	\rightarrow Calculate exclusion limit
total syst. uncertainty	20.9	$10 \qquad 100 200 000 100 000 700 700 $

Limit on $M_{\tilde{\chi}_1^0}$ - $M_{\tilde{b}}$ plane

新物理の事象数に対する制限 (95% C.L.):25.2 事象 予想される信号事象数:16.4 (@M͡ょ=240 GeV, M͡श₁=80 GeV) →探索に用いたパラメータ領域の棄却はできず。

仮定 事象選択は同じ、系統誤差:30% (現状55%=20.9/37.7)

来年度中にM_b<280 GeV程度の探索が可能となる見通し

Summary

- 大きなE^{_miss}, b-jetの存在という特徴を活かし、
 - dijet事象を用いて超対称性事象の探索を行っている。
- 35pb-Iのデータを用いた結果ではExcessは得られなかった。

data : 35 events MC : 37.7 ± 5.9(stat.) ± 20.9(syst.) @35pb⁻¹

- M_{X⁰1}-M_b planeで棄却を試みたが、従来のLimitに届かず 95% C.L. limit : 25.2 Expected signal yield : 16.4 (@M_b=240 GeV, M_{X⁰1}=80 GeV)
- 系統誤差>>統計誤差→背景事象をデータから求める事で減少を計画
- 来年度中にM_☉<280 GeV程度の領域で探索可(M_∞<100GeV, Syst=30%を仮定)

backup

Limit on $M_{\tilde{\chi}_1^0}$ - $M_{\tilde{b}}$ plane

Object definition

Jet: pT>20GeV, |η|<2.5

- AntiKt 0.4 @ EM+JES
- Standard rel16 cleaning

b-jet: pT>30GeV, |η|<2.5

- SV0 (L/σ(L))>5.85

ET^{miss}:

- Simplified RefFinal(ET sum of all jets, leptons, clusters outside jets)

(Only for lepton veto) Electron: pT>I0GeV, |η|<2.5

- isRobustMedium
- Author I or 3
- Not touching dead OTX

Muon: pT>I0GeV, |η|<2.4

- Staco
- Combined muon
- Isolation: pT_{cone20} < I.8GeV
- Standard track quality cuts

Results of 3jet analysis

- Results are consistent with SM expectation so, results are interpreted as follows:
- Phenomenological MSSM grid (gluino-sbottom, gluino-stop) $M_{gluino} < 590$ GeV excluded for $M_{sbottom} < 500$ GeV $M_{gluino} < 520$ GeV excluded for $M_{stop} > 300$ GeV
- high tan β mSUGURA scenario (tan β =40, μ >0, A₀=0) M_{gluino} < 500 GeV for 100 GeV < m₀ < 1 TeV M_{sbottom} < 550 GeV, M_{stop} < 470 GeV, M_{gluino} < 600 GeV if Mgl=Msq1,2
- SO(10) scenario

M_{gluino} < 520 GeV (model : DH3) M_{gluino} < 420 GeV (model : HS)