

山中隆志,金谷奈央子^A,浅井祥仁, 駒宮幸男,目黒立真^B 東大理,東大ICEPP^A,阪大理^B

26aGB-6

日本物理学会

LHC-ATLAS実験における ボトムクォークを含む マルチジェット事象を用いた 超対称性粒子の探索

1. 理論的背景
 2. 事象選択と結果
 3. 今年の展望とまとめ

第66回年次大会 新潟大学 2011年3月26日

Decay to 3rd Generation of Susy Particles

2

 ■ MSSMなどの標準的な超対称性理論において、第三世代粒子の超対称 性パートナーは他の粒子に比べて軽くなりやすい
 D = M²₇ cos 2β

sbottomの質量行列 (mSUGRA) $m^2(\tilde{b}) = \begin{pmatrix} m_0^2 + 6.28m_{1/2}^2 + m_b^2 - 0.42D & -m_b (A_b + \mu \tan \beta) \\ -m_b (A_b + \mu \tan \beta) & m_0^2 + 5.82m_{1/2}^2 + m_b^2 - 0.08D \end{pmatrix}$

- □ その結果、第3世代粒子の超対称性パートナーを通しての崩壊がenhance
 - $f \square$ M(squark)<M(gluino) ig> 2-body decay $ilde{q} o ilde{b}_1 b$
 - M(squark)>M(gluino) → 3-body decay
- $\tilde{g} \rightarrow \tilde{\chi}_i^0 b \bar{b}$
- 超対称性粒子(SUSY)的な粒子が発見された場合、第三世代粒子の excessがあるかが重要な証拠

Susy Monte Carlo Sample

3

第三世代のenhanceが起こるmSUGRA (tanβ=40, A₀=0, μ>0)について述べる

multi-jet, bjet, MET, 0/1-lepton 解析

Data, SM BG Sample

2010年にATLASで取得した35pb⁻¹のDataを使用

Standard Model Background (Monte Carlo)

Sample	Total cross section	Generator
QCD dijet (p _T >8GeV)	1.05e7 nb	PYTHIA
W + jets / W+bb	31.4 nb / 9.47 pb	ALPGEN + JIMMY
$Z/\gamma^*(\rightarrow II)+jets / Z/\gamma^*(\rightarrow II)+bb$	3.20 nb / 37.6 pb	ALPGEN + JIMMY
$Z (\rightarrow VV) + jets$	5.82 nb	ALPGEN + JIMMY
ttbar / single top	161 pb / 37 pb	MC@NLO + JIMMY
diboson	7.10 pb	ALPGEN + JIMMY

Background Estimation

□ QCDは断面積が大きく、MCの不定性も大きいので、Event Selectionで、無視できる量にまで減らし、Data drivenで推定
 □ 他のSM BackgroundはMCの精度が高いので、今回はMC baseに推定を行い、系統誤差を付けた ← Data drivenの推定で確認

Event Selection (O-lepton)

O-lepton (lepton pt>20GeV veto) □ jet Pt>120,30,30GeV multi-jet, large METOtopology □ Missing ET>100GeV を選び出す □ minDeltaPhi > 0.4 rad QCD BGを落とす □ MET / Meff > 0.2 Events / 0.1 rad **AS** work in proaress 0-lepton, 3 jets 🗆 at least 1 bjet 10 . dt = 35 pb⁻¹.√s = 7Te on production OCD production 240GeV, m, =250GeV 760GeV. m^{1/2}=190Ge □ Meff > 600GeV

10⁻¹

 10^{-2}

0.5

minDeltaPhi(leading 3jetとMETのなす角の最小値)

1.5

2

2.5

 $\Delta \phi_{min}$ [rad]

$$M_{\rm eff} = E_{\rm T}^{\rm miss} + \sum_{\rm n=1}^{<=4} p_{\rm T}^{\rm nth\,jet}$$

B-Tagging

b-taggingによりb-jetが1本以上あることを要求する

- b quarkが中間子をつくって比較的長寿命(~1ps)なことを利用して tagする
- □ SV0 : Secondary Vertex Finder
 - Jetにassociateしたtrackからvertexを再構築
 - primary vertexとの符号付き距離(L)を距離の測定誤差(σ)で割った
 L/σ = significance を用いる

実験初期から高い - efficiency/rejection かつ比較的小さい uncertainty

secondary vertex reconstruction 模式図

b-jet efficiency=50%, light jet rejection=260

MC SimulationでのSV0の分布 真のsecondary vertexの場合、符号付き距離は正に出る

QCD Estimation in 0-lepton Channel

- 7
- □ Meff>600GeVに残るQCDの推定
 - minΔφ<0.4のregionを使って、signal region側(minΔφ>0.4)
 を推定する
 - min∆φとMeffの相関は無視できないので、MCでcorrection factorを求め、その分の系統誤差を考慮する

NonQCD BG Estimation

8

 1-lepton channelで、SM Background dominantな MT<100GeVをcontrol sampleで使用する
 0-lepton channelと同じevent selectionを行い、Meffの shapeから推定

Systematic Error

- Jet Energy Scale (JES) Uncertainty
 - jetのenergy scaleはdetectorでの生の測定値にdead materialやカロリ メーターにenergyを落とさずに逃げた粒子などの補正をかけて得られ るが、それらの不定性
- B-tagging Uncertainty
 - SVOによるb-jet selectionの不定性
- Theory
 - generator, PDF, Renormalization/factorization scale

Signal regionに残るevents数への系統誤差

	Events	Stat.	JES	b-tag	Theory	Lumi.	others	Data driven
nonQCD BG	17.5	± 3%	± 25%	± 15%	± 27%	± 3%	± 5%	
QCD BG	1.4							± 70%
Reference 1	24.6	± 3%	± 10%	± 10%	± 37%	± 3%	± 5%	
Reference2	11.8	± 3%	± 13%	± 10%	± 31%	± 3%	± 5%	

CutFlow

□ 35 pb⁻¹でのCutflow

	cut		Data		SM BG		Reference 1	Reference 2		
	0-lepton, jet	t pt, ME	T, MET/Meff	, minΔφ c	uts					
	bjet>=1	bjet>=1			657 ± 200(sys.)		34	17.6		
	min∆φmin >	> 0.4	91		90 ± 30(sys.)	27		13.8		
	Meff>6000	GeV	15		19 ± 7(sys.)		25 ± 10(sys.)	11.8 ± 4.4 (sys.)		
	ここでQCD	をnorm	alize			' 50 GeV	$10^{3} = ATLAS \text{ work in progress} \qquad 0\text{-lepton, 3 jets}$ $10^{2} = \int L dt = 35 \text{pb}^{-1}, \sqrt{s} = 7 \text{TeV} \qquad \overset{\bullet}{=} \begin{array}{c} \text{Data 2010} \\ \text{SM Total} \\ \text{SM Total}$			
	cut	QCD	W+jets	Z+jets	TTbar+single top	ents		600GeV		
0-lepton, jet pt, MET, MET/Meff, min $\Delta \phi$ cuts										
bjet>	=1	540	26	10	81					
min∆¢	βmin≥0.4	8.1	16	6.7	60					
Meff>	>600GeV	1.4	3.8	1.7	12.0		10 ⁻¹			

 10^{-2}

400

SMのみのMCからの推定はDataと矛盾しない

Meff cut前のMeff分布

1200

1600

2000

 $m_{
m eff}$ [GeV]

1-lepton Result

- 1-lepton (at least one lepton pt>20GeV)
- □ jet Pt>60, 30GeV
- Missing ET>80GeV
- MT(lepton-MET) > 100GeV
- at least 1 bjet
- □ Meff > 500GeV

Meff cut前のMeff分布 左:electron channel 右:muon channel

Exclusion Limit

□ 35pb⁻¹でのlimit

Prospect for This Year : mSUGRA

- 2011年に予定されているDataは2 fb⁻¹
- 統計が十分あるので、よりsensitivityの高い4jet channelに移る
 - bjetはb-taggingのsystematic errorと統計を考慮してat least 1のまま
 - □ 各jet ptのcutを最適化することにより、更にsensitivityを向上

Light Stop Topology

- SUSYの枠組みでHiggs massのNaturalnessを考えると、scalar top (stop)は軽くなけ ればならない (<~400GeV)
- Light stopを仮定しても、SUSYのmodelまでは決まらないので、考えられるモードを 全て探索する
 - □ SUGRA (Chargion₁~Wino) σ 場合 \rightarrow 2b + multi-jet + MET + w/wo lepton
 - □ Chargino₁ ~ Neutralino₁の場合 \rightarrow 2b + MET になり得る
 - GMSB (light Higgsino)の場合 → 2b + 2Z/h + METというtopologyもあり得る

Light Stop Search

15

Light stop pairはSM Topによく似たtopologyなので、難しい探索

- 特殊なtopologyの場合、比較的、容易に探索可能
- [1] M. Asano et al., arXiv:1010-0692, "Natural SuperSymmetry at the LCH"

$m_{\widetilde{g}_3} = m_{\widetilde{u}_3} = 400 { m GeV}$	$m_{\tilde{t}_1} = 231 \text{GeV}$	□ ~t ₁ の対生成から、 断面積@
$A_t = -800 \text{GeV}$	$m_{\tilde{\chi}_1^+} = 197 \text{GeV}$	$\widetilde{t}_1 \rightarrow b \widetilde{\chi}_1^{\pm} \rightarrow b \widetilde{\chi}_1^0 (\rightarrow Z / h + \widetilde{G})$
$\mu = 200 \text{GeV}$	$m_{\tilde{\chi}_1^0} = 194 \text{GeV}$	というdecay chain
$\tan\beta = 10$	h = 120 GeV	が、2b+Z+Z/h+MET→2b+II+qq+ME

cav chain lepton 解析ではbackgroundに埋もれてしまう b+Z+Z/h+MET→2b+II+qq+MET channelを使 うことで、高いS/Nが得られる

断面積@7TeV~4pb

2fb⁻¹でのcut flow (electron channel)

	no Cut	2electron	3jet>30GeV	MET>50GeV	80GeV <mee<100gev< th=""><th>b-tagged jet>=1</th></mee<100gev<>	b-tagged jet>=1
QCD		1649	5	1.5	0	0
W		2074	49	28	4	0
Z		182601	1231	42	18	2
Тор		709	204	127	21	14
Diboson		371	14	0.8	0.6	0
SM Total		187403	1502	199	43	16
stop	16964	124	47	30	30	17

Conclusion

- 16
- 第三世代粒子を含む超体性粒子の探索は標準的な超対称 粒子探索と並んで、発見が期待できるトポロジー
- LHC-ATLASで取得された35pb⁻¹のDataを用いて解析を行い、
 large tanβ mSUGRA modelでのexclusion limitが広がった
- □ 今年中に到達できそうな積分ルミノシティ~2 fb⁻¹
 - これまでのDataだと統計に制限されていたが、これだけの 統計量があればbackgroundに対してより厳しいcutを行い、 mSGURAに対するsensitivityの大きな向上が望める
 - 回 理論的に予測されるlight stop (200-400GeV)も見え始める