ATLAS実験アップグレードに向けた Telescope位置検出器を用いた シリコン飛跡検出器用試験システムの構築

東京工業大学 陣内研究室 岸田 拓也

久保田知徳, 陣内修, 岡村航^A, 遠藤理樹^A, 花垣和則^A, 池上陽一^D, 海野義信^D, 田窪洋介^D, 木村直樹^F, 近藤敬比古^D, 高嶋隆一^C, 東城順治^D, 寺田進^D, 永井康一^F, 中野逸夫^B, 原和彦^F, 寄田浩平^F, 他アトラスSCTグループ

東工大, 阪大理^A, 岡山大^B, 京都教育大^C, 高工研^D, 筑波大^E, 早大理工研^F,

1

LHCアップグレード

2012年までにはvs=7 TeVで出来ることは全て達成される予定。

- Ex.)
- ・ Higgsの存在確率がほぼ全質量領域で3σ以上で明らかになる
- SUSYの探索質量領域が1 TeV まで広がる
- 今後、『Luminosity』のさらなる増加を目指したUPGRADEが計画されている。

	LHC (2011)	LHC(~2020)	HL-LHC(2021~)
Peak Luminosity	10 ³³ cm ⁻² s ⁻¹	$2 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$5 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Integrated Luminosity	~1 fb ⁻¹	300 fb ⁻¹	3000 fb ⁻¹
√s	7 TeV	14 TeV	14 TeV
Bunch Spacing	25 / 50 ns	25 / 50 ns	25 / 50 ns
Protons per Bunch	1.15×10^{11}	$1.7/2.3 \times 10^{11}$	1.7 /2.3 × 10 ¹¹
Pile Up Events	~5	~50	>200

Inner Detectorアップグレード

今回はATLAS Detectorの中で、Inner Detector(特にsct)のUPGRADEについて説明する。

◆ <u>Inner Detector UPGRADEの目的</u>

- Occupancy 增加抑制
- 分解能向上
- 放射線耐久強化(次ページ)

Inner Detectorの配置変化 PIXEL -NOW -SC TRT $R \rightarrow 0 \ 10 \ 20 \ 30 \ 40 \ 50 \ 60 \ 70 \ 80 \ 90 \ 100$ [cm] PIXEL SCT short strips long strips 2.4cm 9.7cm -AFTER -

Inner Detectorの種類

- TRT : Gas Tube Detector
- SCT : Silicon Strip Detector
- PIXEL : Silicon Pixel Detector

-NOW -

- TRT : Straw tube tracker
- SCT : 12 cm strips
- PIXEL : 50 × 400 um (=1 pixel)

-AFTER -

- TRT : 全撤去
- SCT : long strips(9.7cm) short strips(2.4cm)

PIXEL: 50×250 um (=1 pixel)

Detectorの高集積化によって ・Occupancy増加抑制

• 分解能向上

2011年春季日本物理学会

Inner Detectorアップグレード

今回はATLAS Detectorの中で、Inner Detector(特にSCT)のUPGRADEについて説明する。

◆ Inner Detector UPGRADEの目的

- Occupancy 增加抑制
- 分解能向上
- 放射線耐久強化(欧ページ)

Inner Detectorの種類

- TRT : Gas Tube Detector
- SCT : Silicon Strip Detector
- PIXEL : Silicon Pixel Detector

-NOW-

- TRT : Straw tube tracker
- SCT : 12 cm strips
- PIXEL: 50 × 400 um (=1 pixel)

-AFTER -

- TRT : 全撤去
- SCT : long strips(9.7cm) short strips(2.4cm)

PIXEL: 50 × 250 um (=1 pixel)

Detectorの高集積化によって ・Occupancy増加抑制

• 分解能向上

2011年 春季日本物理学会

SCT アップグレード

Module

	Current	Next (short)
Sensor Type <i>(放射線耐久に強く寄与)</i>	p-in-n	n-in-p
Side	Double sided	Double sided
Sensor Size	12cm × 6cm	10cm × 10cm
Strip Length	12cm	2.4cm
Strip Pitch	80 um (=768strips)	74.5 um (= <mark>1280strips × 4</mark>)
Thickness	285 um	320 um
ASICs	ABCD3T ASICs (×12)	ABCN ASICs (×20)

Current SCT module

Next short SCT module

新DAQを作る

• ASICs

ABCN ASIC(ABCNext front-end) 250 nm IBM CMOS6 technology

	ABCD	ABCN		
ch数	128	128		
Buffer Size	3.2 μs	6.4 μs		
Gain	50 mV/fC	100 mV/fC		
Threshold Step	0.050 fC	0.032 fC		
ADCは無いので各chでThresholdを超えた strip情報が得られる。				

2011年 春季日本物理学会

これらの新しいSensorやASICに対応した SCTテスト用読み出し試験システムが必要 ① 既存のSCT DAQを 新Sensor/ASICに対 便な点も改良した

応させる。

2011/4/25

-既存のSCT DAQ システムとの違い-

	SCT DAQ	新DAQ
最多読み出しLine	4	34
使用OS	Windows	Mac/ Linux
使用製品	National Instruments製 ハード&ソフト	SEABAS & C/C++ソフト (安価&汎用性高)
出力	Plot図のみ	カスタム可

この新DAQシステムの構築(P7参照)及びテスト項目の開発(P11参照)は岡村氏(大阪大学)が進めてきた。

参照:

2010年秋季日本物理学会の大阪大学岡村氏による"ATLAS実験シリコンストリップ飛跡検出器 アップグレード用読み出しシステムの開発"

2010年度後半から、この岡村氏の構築したDAQシステムを基本にして

•大阪大学 : 複数Line読み出しへの拡張

•東京工業大学 : 1 line読み出しでのTestBeamへの応用

という役割分担のもとに共同開発を進めてきている。

- 新井氏/内田氏(KEK)作製のTCP/IP読み出しボード「SEABAS」を使用
 - User FPGA : FrontEnd ASICのコントロール用
 - 大容量Buffer(1296 kbit) & 120本のI/O搭載で最大34 line 同時読み出し可能
 - ➢ 既存のSCT DAQシステムとの大きな違いの1つ
 - SITCP FPGA: TCP/IP通信用
- 開発内容
 - PC側読み出しSoftware (C/C++)
 - User FPGAの実装

- 新井氏/内田氏(KEK)作製のTCP/IP読み出しボード「SEABAS」を使用
 - User FPGA : FrontEnd ASICのコントロール用
 - 大容量Buffer(1296 kbit) & 120本のI/O搭載で最大34 line 同時読み出し可能
 - ▶ 既存のSCT DAQシステムとの大きな違いの1つ
 - SITCP FPGA:TCP/IP通信用
- 開発内容
 - PC側読み出しSoftware (C/C++)
 - User FPGAの実装

- 新井氏/内田氏(KEK)作製のTCP/IP読み出しボード「SEABAS」を使用
 - User FPGA : FrontEnd ASICのコントロール用
 - 大容量Buffer(1296 kbit) & 120本のI/O搭載で最大34 line 同時読み出し可能
 - ▶ 既存のSCT DAQシステムとの大きな違いの1つ
 - SITCP FPGA: TCP/IP通信用
- 開発内容
 - PC側読み出しSoftware (C/C++)
 - User FPGAの実装

- 新井氏/内田氏(KEK)作製のTCP/IP読み出しボード「SEABAS」を使用
 - User FPGA : FrontEnd ASICのコントロール用
 - 大容量Buffer(1296 kbit) & 120本のI/O搭載で最大34 line 同時読み出し可能
 - ▶ 既存のSCT DAQシステムとの大きな違いの1つ
 - SITCP FPGA:TCP/IP通信用
- 開発内容
 - PC側読み出しSoftware (C/C++)
 - User FPGAの実装

新DAQシステムで可能なTEST

現在可能なTest項目の主な一覧

- Strobe Delay Scan Test
 - Calibration Pulseを送るタイミングを決定するTest
- L1 Delay Scan Test
 - Triggerのタイミングに対応したHit Dataのタイミングを決定するTest
- 3 Point Gain Test
 - ChipのGain(mV/fC)を測定するTest
- Threshold Curve Test
 - 各chのThreshold Curveを測定するTest
- Hit Test
 - 各chのHit Dataをひたすら蓄積するTest(BeamTest用)

Strobe Delay Scan Test

Calibration Pulse:

ABCN ASICは、様々なTestを行う為に、ASIC 自らがCalibration PulseをFront Endに送れる 仕様になっている。

Strobe Delay Scan:

本TestはCalibration Pulseを送るタイミ ング(Cal Delay)をScanして、適切なも のに設定する為のTestである。 適切なCal Delayとは、Calibration Pulseのタイミングが読み出すTime bin に最も合っていると思われる値である。

・Hitの勘定方法:

読みだすTime binの片側のedgeで、 Calibration PulseがThresholdを超えて いればHitとして勘定される。

·採用Cal Delay值:

このScanのHit領域のCal Delayが小さい側から1/4の値のCal Delayを適切値として採用する。

2011/4/25

L1 Delay Scan Test

L1 Delay Scan:

従来、Trigger SignalはInject Pulseよりも遅れてくるものである。

その為、本TestはABCN ASICがTriggerを受け取った際に、Triggerを受けたタイミングからどれだけ遡ったタイミングでHit Dataを読み出せばよいかを決定する為のTestである。

このTESTでは、各L1 Delay値につきそれぞれ100Trigger分のdataを貯めている。

3 Point Gain Test

3Point Gain Test:

Threshold CurveからVt50を、Inject PulseのCharge[fC]ごとに3点求めて、線形Fitすることにより、ASICのGain[mV/fC]を求めるTestである。

※この結果は、SensorがChipに繋がっていない時の結果である。

Input Noise: Threshold Curveのoから求めたOutputNoiseを、求めたGainを用いてENC変換したもの。

Threshold Curve Test

Threshold Curve Testはその名の通り、thresholdの値を変化させ、ASICのFront-Endに入ってきた電荷のThreshold Curve(S Curve)を測定するテストである。

- ABCN ASICはテスト用に、Front-Endに自ら電荷を送ることが出来る(Calibration Pulse)為、実測の前に Thresholdを設定する為などに用いる。
- 自ら電荷をFront-Endに送らなければ、noise電荷のチェックにもなる。

(それぞれのCurveの形が違う理由は、Strip48,50はSi Sensorにラインが伸びているch、Strip49,51はラインが無く閉じているchであるから)

Test Pulse(Inject Pulse) : 3.2fC

左図は、各chのThreshold Curveから求めた 各chのgain[fC/mV]とInput Noise[ENC]である。 この結果はSensorをChipに繋げた状態での 結果である。

ASICのchのうち

32ch,34ch,36ch,・・・,92ch,94ch,96chのみ Sensorにラインが伸びている為、その部分の ENCが少し大きくなっている。 また、Gainが90ch付近のみ大きくなっている のはこのSensorの特性と思われる。

2011年春季日本物理学会

Checking Source Test(L1 Delay Scan)

このDAQシステムをTest Beamで用いる前に、Checking Source等での試験が必要となる。 今回のTestはChecking SourceとPMT+シンチレータ(Trigger)とSensorの系で新DAQシステム を試験した。

- ・ 使用Checking Source : 90Sr (β線源、Avg E : ~ 1 MeV(Max E : ~ 2 MeV))
 - Sensorに落とすEnergyは~5fC
- Threshold : 250 mV (~3fCのvt50)

- 上図より、この測定で使用したSetupでの適切タイミング(L1 Delay)は5 or 6(= 125 or 150 ns)となる。
- 今回の試験ではASICのchのうち32ch,34ch,36ch,・・・,92ch,94ch,96chのみしかSensorに繋がっていない為、hit分布が上図のようになる。
- Hit Rateが右肩上がり(90ch付近の方が高く)なっているのは90ch付近のvt50が高い(=90ch 付近のgainが大きい)ことが原因である。

Checking Source Test(Hit Test)

- ・ 使用Checking Source : 90Sr (β線源、Avg E : ~ 1 MeV(Max E : ~ 2 MeV))
- Threshold : 250 mV (~3 fCのvt50)
- L1 Delay : 5

- 32ch~96chにHitが見えているのがわかる。
 - L1 Delay Scan Testに見える各chの傾向が同様にこのHit Testにも見えているので、適切な結果である事がわかる。
 - また、L1 Delayの値を5 or 6以外の見当違いの値にすると、hitは全く得られないことから上図はNoiseを拾っているものではないと思われる。

Beam Testに向けて

新DAQシステムをBeamTestに使用する為に、位置検出器(=Telescope)をシステムに組み込む。

- Telescope位置検出器
 - BeamTestにおいて、飛跡の再構築をする際に必要となる。
- 課題:
 - SEABASとTelescopeの処理系統の統一
 - 現在は別々に処理した後で、ファイルを持ち 寄って結果を統合している。

Beam Testに向けて

新DAQシステムをBeamTestに使用する為に、位置検出器(=Telescope)をシステムに組み込む。

- Telescope位置検出器
 - BeamTestにおいて、飛跡の再構築をする際に必要となる。
- 課題:
 - SEABASとTelescopeの処理系統の統一
 - 現在は別々に処理した後で、ファイルを持ち 寄って結果を統合している。

Beam Testに向けて

新DAQシステムをBeamTestに使用する為に、位置検出器(=Telescope)をシステムに組み込む。

- Telescope位置検出器
 - BeamTestにおいて、飛跡の再構築をする際に必要となる。
- 課題:
 - SEABASとTelescopeの処理系統の統一
 - 現在は別々に処理した後で、ファイルを持ち 寄って結果を統合している。

Telescope位置検出器

Telescope位置検出器 == 高分解能なSilicon Strip位置検出器

- Telescope位置検出器 (Silicon Strip Detector) Stripのhit情報をアナログ信号 (Energy情報を含む)として IRAM(ADC VME module)に送る。
 - X方向・Y方向の2つで1 set
 - 測定時は2 set使用する
 - X・Yそれぞれ340 ch
 - Strip間隔: 50 μm
 - 2.1 cm 四方
- IRAM (ADC VME module) Stripからの情報をADC変換し、hit dataとしてPCに送る。

 分解能(実測値)
- X方向・Y方向それぞれ2set使用時 「~15 um」

(1 setあたりx,yそれぞれ:22 um ⇒ 2 setで15 um)

PCでthresholdを掛けた後の、 Hit Stripのenergy histgramとそのfitting

新DAQシステムの出力と今後

まとめ

- ATLAS Inner Detectorのupgradeで、sensorと読み出しASICが一新。
 - その為の評価試験システム開発
 - 新DAQシステム
 - SEABAS DAQ
 - » ABCN ASIC対応のDAQシステム
 - »最大34line同時読み出し可能
 - » Macでもlinuxでも稼働可能
 - Telescope位置検出器
 - » 高分解能なSilicon Strip検出器
 - » BeamTestのTrackingに必要

- 今後
 - SEABAS DAQとTelescope位置検出器の処理系統の統一
 - アライメントとTracking用ソフトの開発(大阪大学と作業分担予定)
 - 今年の夏から秋にかけてBeamTestで稼働予定