日本物理学会「第66回年次大会」

2011年春

LHC-ATLAS 実験における ₩+jets 事象の生成断面積測定

林隆康、金信弘、受川史彦、原和彦、 R. Bruneliere^A、他 ATLAS W+jets グループ

筑波大数理、University of Freiburg^A

Introduction

- LHC-ATLAS 実験における W+jets 生成断面積の測定
 - W生成をプローブとして、付随するジェット生成を摂動 QCD で検証する。
 - ヒッグス、超対称性粒子の探索、トップクォーク生成事象等様々なプロセスの バックグラウンドとしての理解も重要。
- 2010年に ATLAS 検出器により得られた全てのデータ(積分ルミノシティ 33.3 pb⁻¹)を用いて、W+jets 生成断面積を測定した。データは、Next to leading order (NLO) のイベントジェネレータ(MCFM、BLACKHAT-SHERPA) やその他(ALPGEN、PYTHIA、SHERPA)を用いた断面積や 運動学量分布と比較した。
- Contents
 - LHC /ATLAS
 - データ、MC サンプル、事象選択
 - 運動学量分布の比較
 - 生成断面積の導出
 - NLO MC シミュレーションによる理論予想、データとの比較
 - まとめ

LHC加速器 / ATLAS 検出器

2011年春

日本物理学会「第66回年次大会」

データ及び事象の選択

・ データ

- 2010 年までに ATLAS 検出器により取得。
- LHC の重心系エネルギー 7 TeV
- 積分ルミノシティ 33.3 pb⁻¹: $W(\rightarrow ev)$ +jets の解析に用いられたもの
- *W*(→*ev*)+jets 事象の選択
 - トリガー
 - カロリメータのエネルギーが 15 GeV以上の電子
 - 電子
 - *E*_T > 20 GeV、|η| < 2.47 (1.37 < |η| < 2.47 を除く)
 - これらを満たす電子がただ1つ存在する。
 - Missing $E_{\rm T}$ > 25 GeV
 - W transverse mass > 40 GeV
 - ジェット
 - Anti-k_t アルゴリズム (cone サイズ 0.4)
 - $p_{\rm T} > 20 \; {\rm GeV}, \, |\eta| < 2.8$
 - ΔR(e, jet) > 0.5 (電子とジェットの2重カウントを除外)
 - ・ |Jet Vertex Fraction| > 0.75 (pileup 事象の抑制)

シグナル及びバックグラウンド事象

- シグナルシミュレーションサンプル
 - LO : ALPGEN, SHERPA, PYTHIA
 - NLO : MCFM, BLACLHAT-SHERPA
- バックグラウンド
 - MCシミュレーションによって見積もられる バックグラウンド

プロセス	MCサンプル
$W \rightarrow \tau \nu$	ALPGEN
Z→ee	ALPGEN
$Z \rightarrow \tau \tau$	ALPGEN
Ttbar	POWHEG
single top	MC@NLO
dibosons(WW, WZ, ZZ)	HERWIG

- QCDバックグラウンドはデータを用いて見積もる
 - Isolation及びtrackと電磁カロリメータにおけるクラス ターのmatchingの条件を満たさないelectronを選択
 - データとは独立なテンプレート
 - このテンプレートをMCで見積もったテンプレートの和をMissing ET 分布についてデータとフィットする = QCD 分布の規格化。
 - 右図はQCD MC (Pythia) を用いた Missing ET 分布 (通常のelectron 選択及びテンプレー ト用のelectron 選択)
 - QCD の分布はこのテンプレートを用いる。
 - 系統誤差はelectronに対する事象選択を変えて得られた独立なテンプレート同士の差より見積もる。

10 20 30 40 50 60 70 80 90 100

E^{miss} [GeV]

ジェット多重度、ジェットpr

H_T分布

ジェットの質量

事象中の選択された全てのジェット不変質量分布

日本物理学会「第66回年次大会」 林隆康(筑波大)

パートンレベル断面積の導出

- Unfolding
 - 検出器レベルの分布から、検出器にに依存しないハドロンレベルの断面積を導出す
 る為、MC サンプルを用いて bin-by-bin に補正値を求める。
 - 補正値の中心値 : pile-up の効果を含む ALPGEN サンプル
 - 系統誤差 : pile-up を含む/含まない SHERPA
- ジェット多重度及びleading jet pT に対する bin-by-bin unfolding 係数

2011年春

日本物理学会「第66回年次大会」

系統誤差

Jet 多重度毎の断面積に対する系統誤差

Fractional Systematic Uncertainties for the Electron Channel (in %)				
Uncertainty	$N_{jets} \ge 0$	$N_{jets} \ge 1$	$N_{jets} \ge 2$	$N_{jets} \ge 3$
+JES:	-1.4	9.8	14.3	21.0
-JES:	0.6	-7.6	-11.0	-16.3
+JER:	0.1	3.1	4.3	6.2
+Trigger Eff:	-0.5	-0.5	-0.6	-0.7
-Trigger Eff:	0.5	0.5	0.6	0.7
+Ele SF Reco:	-1.5	-1.6	-1.7	-2.0
-Ele SF Reco:	1.6	1.6	1.7	2.0
+Ele SF ID:	-2.6	-2.6	-2.7	-3.2
-Ele SF ID:	2.7	2.7	2.9	3.3
+Ele SF Iso:	-2.0	-2.1	-2.2	-2.6
-Ele SF Iso:	2.1	2.2	2.3	2.7
+Ele p_T Scale:	3.5	4.7	5.1	6.1
-Ele p_T Scale:	-4.0	-5.2	-5.7	-6.6
+Ele p_T Res.:	0.02	0.04	0.07	< 0.01
JVF:	-0.1	6.6	10.7	15.1
Pile-Up:	-1.6	3.5	4.2	7.3
QCD method:	0.5	1.9	3.4	3.0
$+\sigma(W,Z,dibosons):$	-0.2	-0.2	-0.3	-0.2
$+\sigma(t\bar{t}, \text{ single top}):$	-0.0	-0.2	-0.6	-1.9
+Lumi:	-3.4	-3.5	-3.7	-4.4
Unfolding:	-1.6	-2.4	-2.8	-4.8

NLOイベントジェネレータ

- MCFM & BLACLHAT-SHERPA
 - パートンレベルのイベントジェネレータ
 - ハドロン衝突型加速器での W+jets 等の事象をを NLO で生成可能。

• パートンレベルの W(→ev)+jets 事象の選択

Cut	$W \to e \nu$
charged lepton $p_{\rm T}$	$p_{\rm T} > 20 { m ~GeV}$
lepton η	$ \eta < 2.47$, excluding $ \eta = 1.37 - 1.52$
jet algorithm	Anti-Kt, $\Delta R = 0.4$
jet $p_{\rm T}$	$p_{\rm T} > 20 { m ~GeV}$
jet η	$ \eta < 2.8$
jet isolation	$\Delta R(e - jet) > 0.5$
neutrino p_T	$p_T > 25 \text{ GeV}$
transverse mass	$M_T > 40 \text{ GeV}$

NLOのMC シミュレーションに対する補正

- MCFM及びBLACKHAT-SHERPA はパートンレベルのイベントジェネレータ
 - 生成されたパートンに対するパートンシャワー及びハドロン化の過程やUnderlying Event(U.E.)の効果を含まない
 - → データより得られたハドロンレベルの分布と比較するためには、これらに対する補正が必要
- 1. パートンレベルからハドロンレベルへの補正: C_{Had}
 - U.E.をオフにした Pythia を用いる。
 - C_{Had} = ハドロンレベル / パートンレベル

UEの効果の補正: C_{U.E.}
 UEをオン/オフにしたPythiaを用いる。
 C_{U.E.} = U.E.オン / U.E. オフ

• 最終的な補正値: C_{Had} × C_{U.E.}

2011年春

NLO MC シミュレーションの不確かさ

- 1. スケール依存性
 - QCDの2つのスケールに対する依存性を系統誤差とする。
 - 1. Renormalization scale (μ_R)
 - 2. Factorization scale ($\mu_{\rm F}$)
 - $\mu_{R} = \mu_{F} (= \mu)$ として両者を同時に変化させる。
 - $\mu = H_T/2: 中心値$
 - μ = H_T, H_T/4: 系統誤差
- 2. パートン分布関数 (PDF) 由来の誤差 – 後述
- 3. 補正に対する誤差
 - 複数のジェネレータを用いて補正値を計算し、差異を系統誤差とする。
 - 中心值:PYTHIA
 - 系統誤差:HERWIG

パートン分布関数(PDF)由来の誤差の見積もり

- ・ 使用した PDF: CTEQ6.6 NLO PDF
- PDF を決定する22種類の変数を、それぞれ正負に変化させる。
 → 44 通りの PDF について、それぞれ(微分)断面積 を計算。

 $f_{i}^{(x)}$ (i=1~22, x=+,-)

• 以下の式により、PDF 由来の誤差を、正負方向それぞれ見積もる。

$$\delta^{+}f = \sqrt{\sum_{i=1}^{N_{a}} \left[\max\left(f_{i}^{(+)} - f_{0}, f_{i}^{(-)} - f_{0}, 0\right) \right]^{2}},$$

$$\delta^{-}f = \sqrt{\sum_{i=1}^{N_{a}} \left[\max\left(f_{0} - f_{i}^{(+)}, f_{0} - f_{i}^{(-)}, 0\right) \right]^{2}},$$

f_i^(X):i番目の変数をx 方向に変化させた時 の(微分)断面積

– この式は 90% の信頼度で誤差を与える。
 → 68.3% の信頼度(1σ 相当)の不確かさに換算。

Data と MCFM の比較

2011年春

まとめ

- ATLAS 検出器により取得した、重心系エネルギー 7 TeV、 積分ルミノシティ 33.3pb⁻¹ のデータを用いて W(→ev)+jets 事 象の生成断面積を測定した。
- W(→ev)+jets 事象の運動学量分布を、いくつかの MC シミュ レーション(ALPGEN など)と比較した。いずれも良い一致を示 している。
- 測定した生成断面積及び Leading Jet の p_T の微分断面積 を LO の MC 及び NLO の MC(MCFM など)と比較した。 PYTHIA を除き、良い一致を示している。