ATLAS 実験におけるW事象を用いた て粒子同定効率の評価

日本物理学会春季大会

新潟大学 2011年3月25日

日本物理学会

<u>塙 慶太</u>、金信弘、受川史彦、原和彦、 望月和也、津野総司^A、中村浩二^B 筑波大数理、高工研^A、東大セ^B

LHC•ATLAS実験

Large Hadron Collider(LHC)

- 陽子陽子衝突型加速器
- 積分ルミノシティー(2010年分):~35pb-1

	設計値	現在
重心系エネルギー [TeV]	14	7
ルミノシティー [cm ⁻² s ⁻¹]	1.0 × 10 ³⁴	1.0 × 10 ³¹

ATLAS検出器

- LHCに設置されている汎用型検出器 - <u>Higgs粒子</u>、超対称性粒子、余剰次元 の探索などが行われている。

2011年3月25日

慶太

塙

研究の動機

Tau の同定

<u>Tauの崩壊モードと特徴</u>

leptonic崩壊モードでのleptonはprompt leptonと見分け難い。 -> 本研究では、hadronic tauの同定(以下tauID)のみ考える。 (ATLAS実験でもhadronic tauが主対象モード)

	主な崩壊モード	Br
Leptonic	$\tau \rightarrow \mid -\nu \nu$	35.2%
Hadronic		64.8%
1-prong	$\tau \rightarrow \pi^- \nu_{\tau} + N \pi^0$ (N=0,1,2)	- 46.7%
3-prong	$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau} + N \pi^0 (N=0,1)$	- 11.7%

<u>Hadronic tauの特徴</u>

☑1本または3本の荷電トラック ☑ $\pi \pm, \pi 0$ がブースト(tau質量に対し、 π が極めて軽いため) →<u>細い領域に1または3荷電粒子が存在する</u>Jet

しかし、QCDからのbackgroundが多く、その評価が困難。 ->実験データから実際にtaulDを評価することは、tauを含む物理解 析において非常に重要。

塙

研究方法

~W->tau nu事象を用いたTau ID Scale Factor の測定~

- 1.W->taunu eventを効率よく捕まえる。
 - nu=消失エネルギー(MET)の要求:エネルギーのベクトル和から評価
 - tau jetの要求 : tau jetの細さの特徴を用いる
 - 横方向質量(Mt)の要求: tauの横方向運動量とMETで組んだ質量がWの質量に近い。
- 2.上記のイベントセレクションで残った事象のtau候補について、飛跡(track)数分布を backgroundを含めた分布でフィットし、Wからのtauの割合f(=fraction)を求める。

Dataset and event selection

Trigger

•taulDの影響を小さくするためMET triggerを使用 •MCから期待されるtau数を出すため右図のように

- Period毎にunprescaled triggerを使用
- *Trigger menu
 - EF_xe30_noMu(EF_xe40_noMu)
 - -MET閾値>30GeV(>40GeV)のtrigger

<u>カテゴリー分け</u>

- -Triggerやeventに付随するjetの数によって,kinematicsやtauのpurity が大きく違うため以下のような3つのカテゴリーに分けて,pre-section 後 さらに下のtableのようなselectionをかける。
- •0jet in EF_xe30_noMu
- •1 or 2jets in EF_xe30_noMu
- •0,1 or 2jets in EF_xe40_noMu

	EF_xe30_noMu	EF_xe40_noMu	
no jet	$E_{\mathrm{T}}^{\mathrm{miss}} > 30~\mathrm{GeV}$	•	ただし各変数は以下に従う。
	$60 < m_T < 100 \text{ GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 40~\mathrm{GeV}$	a lep runier (1 44)
	$VtxE_T^{miss}$ significance > 6	$20 < m_T < 80 \text{ GeV}$	$\rightarrow m_T = \sqrt{2p_T^{\mu_T} E_T^{mas} (1 - \cos \Delta \phi)}$
1 or 2 jets	$E_{ m T}^{ m miss}>$ 30 GeV	$VtxE_T^{miss}$ significance > 8	$E_{\rm T}^{\rm miss}$
	$30 < m_T < 90 \text{ GeV}$		\rightarrow Vtx $E_{\rm T}^{\rm mass}$ significance = $\frac{1}{\sqrt{\Sigma p_{\rm T}}}$.
	$VtxE_T^{miss}$ significance > 7		

Period	EF_xe30_noMu	EF_xe40_noMu
E	1.0	-
F	1.8	-
G	5.4	-
Η	-	5.5
I	-	20
Total	8.3	26

2011年3月25日

塙

QCD shapeのモデリングの研究

QCD過程はEWK過程と比較して、MCで実験事実を詳細に記述するのは困難であり、不定性も大きい。

-> データからtau Signal regionのトラック分布の形を抽出する。

QCD modeling

以下の2つのmodelingを用いる

1. based on W+jets

右図よりW ->Inu過程に付随するjet がtaulこfake するeventがQCD backgroundとして支配的。 →dataからW->enu+jet eventを選別しそれに付 随するjetがtauへfakeした時のtrack分布を QCD modelingとする。

2.Based on QCD-dijet

方法1のcross check(MC predictionが間 違っている可能性もあるため)としてQCD di-jet eventが支配的な領域のtrack分布を 使う.

*track分布はsignal領域とcontrol領域の横 方向運動量の違いを補正したものを使う。

Based on W+jets modeling

-前述のように本解析において主要なback groundは右図のようなW+jet事象である。 - そこでW->enu+jet事象を用いて、この過程におけるjetがtauにfakeした時のtrack分 布をsignal regionのQCD modeling とする。

・左図より、event selection後のfake jetはMCとdataで良い一致を示す。
 ・data plotをQCD modelingとして使う。

8

Based on di-jet for modeling systematic

-前述のようにMC predictionが間違ってることも考えられる。 (主にq-jet,g-jetの違い等,前述のW+jet事象はLHCではq-jet dominant) -そこでMtの低いregionのtrack分布をreweight function{Pt(SR)/Pt(CR)}を使ってevent 毎に補正した分布をsignal regionのtrack分布として用いる。 SR,CR(はMt領域で以下のように定義

SR,CRはMt領域で以下のように定義 •SR : Mt window(page6) •CR : Mt<10GeV

塙

慶太

9

二つのmodelingのTaulD SFの違いをQCD modelingのsystematic uncertaintyとする。

日本物理学会

•Mtの低い量式ではQCD(赤)di-jet eventが支配的であり、dataもよく再現する。 •W/Z等のelectroweakはMCのpredictionを使って引く。

Fitting result

-Tau fraction f のみをパラメーターにしたfitting結果 Based on W+jets

Based on QCD di-jet (pt weight)

<u>上のfittingから測定したデータ中のtau数:</u>

	Number of signals		
category	Fake from $W + j$	p_T weight	
0jet in EF_xe30_noMu	295.1 ± 13.2	298.2 ± 11.4	

・どちらのmodelingもよくmodelされている。
 ・Modelingによるtau数の違いは系統誤差としてSFの誤差へいれる。

2011年3月25日

日本物理学会

Verification using central fraction

Fittingに使われたTau候補のcalorimeterのshapeをfittingから得られたsignal fractionを用いて規格化した分布。

日本物理学

Fraction of transverse energy in the cone (dR < 0.1) about the t candidate normalized by that about the cone (dR < 0.4)

塙

慶太

11

MET Trigger 効率の評価

-Trigger効率を含まないtaulD SFを評価するため、MET trigger 効率を求める。 <u>方法</u>

Lepton triggerでW->enu eventを捕まえ、その事象を使い、以下の式のようにしてMET trigger efficiencyを評価する。 EventWeight = $data(W \rightarrow ev) \frac{MC(W \rightarrow \tau v)}{MC(W \rightarrow ev)}$

Comparison data(W->e ν) with MC(W->e ν) Event weight each prong Efficiency Efficiency ATLAS works 0.8 0.8 - Data in progress MC:W→ ev — Mixture of any-prong events 0.6 0.6 **ATLAS works** in progress 1-prong events 0.4 0.4 — multi-prong events 0iet channel 0.2 0.2 √s= 7 TeV , L=8.3pb⁻¹ **Ojet channel** 80 100 60 20 40 60 80 100 120 140 MET Topo Missing Et [GeV] MET_Topo Missing Et[GeV]

Event毎に右plotのevent weightを適用する。 また系統誤差の評価としてprong(tau cone中のtrack数)毎のevent weight を用いる。

日本物理学会

塙

慶太

12

Result with all uncertainties

	5000003	Chechanity			
系統誤差のソース:		Combined	0jet in	1 or 2 jets in	0,1 or 2jets in
リ下の3つが支配的なもの			EF_xe30_noMu	EF_xe30_noMu	EF_xe40_noMu
	Jet modeling	1.0%	1.1%	11.5%	3.0%
• I au jet energy scale	Observed cross section of W boson	7.9%	5.8%	5.8%	5.8%
•Generatorの違い	Trigger efficiency	3.8%	4.8%	1.3%	0.4%
●σ、(W->Inu)の不定性	Electron fake rate	4.0%	4.0%	4.7%	4.4%
	Generator	12.3%	16.0%	5.5%	7.5%
	Tau energy scale	10.0%	10.4%	15.6%	6.3%
	Jet energy scale	0.1%	1.0%	6.6%	0.1%
	Electron energy scale	0.8%	0.5%	2.0%	2.2%
	vtxMET significance	0.2%	0.1%	0.1%	0.1%
	Total	18.6%	21.0%	22.6%	12.8%

2011年3月25日

塙 慶太 13

Summary

Conclusion

ATLASで2010年に取得されたデータを用いてTau IDの同定効率を見積
 もる方法を考案した。
 W->taunu eventを用いて、tau中の荷電トラックの数をフィットすることで

- データ中のtauの数(N^{data}tau</sub>)を見積もる。
- ●本研究より得たTau ID scale factor(N^{data}tau</sub>/N^{MC}tau</sub>)は

0.98±0.04(stat)±0.18(sys)

•他の方法の値ともよい一致を示す。

<u>Plan</u>

•2011年に取得予定の高統計のデータからも見積もる.

新たに考案されたMETsignificance(=MET/sqrt(sumET)) triggerを使うことで測定

精度の向上を狙う。

•測定されたTauID SFを用いてH->tautauの解析を行う。

