ATLAS 実験におけるW事象を用いた て粒子同定効率の評価

日本物理学会春季大会 新潟大学 2011年3月25日

<u>目次</u>

- 1.導入
 - -LHC・ATLAS実験,研究の動機
- 2.研究方法
 - -Event selection ,QCD モデリング
- 3. 結果
 - -フィッティング、系統誤差
- 4. まとめと今後

<u>塙</u> 慶太、金信弘、受川史彦、原和彦、 望月和也、津野総司^A、中村浩二^B 筑波大数理、高工研^A、東大セ^B

LHC - ATLAS実験

Large Hadron Collider(LHC)

- 陽子陽子衝突型加速器
- 積分ルミノシティー(2010年分):~35pb-1

	設計値	現在
重心系エネルギー [TeV]	14	7
ルミノシティー [cm ⁻² s ⁻¹]	1.0×10^{34}	1.0×10^{31}

ATLAS検出器

- LHCに設置されている汎用型検出器
- <u>Higgs粒子</u>、超対称性粒子、余剰次元の探索などが行われている。

研究の動機

Why tau?

- ●標準模型ヒッグスがtau粒子対に崩壊する過程は、ヒッグスの質量が低い時の主要発見モード
- •<u>ヒッグスとフェルミ粒子との結合</u>の測定
- ->結合定数の測定は、ヒッグスモデルの検証に重要 SUSYのモデルやパラメーターによってはtauが 多く生成されるので、結合定数の測定により、 モデルやパラメーターの絞り込みが可能。

本研究では

- W->tau nu事象を用いてtau同定効率のモンテカルロと データの比(<u>Tau ID Scale Factor</u>=data/MC) を測定する。
- tauの生成断面積 σ : $(アクセプタンスAccはMCで評価) \sigma = \frac{N_{data}}{Lumi \times Acc \times SF}$

Tau ID Scale Factor(SF)の測定は,標準模型(SM)H->tautauやMSSM h/A->tautau過程の研究等の<u>重要な鍵</u>になる。

Tauの同定

Tauの崩壊モードと特徴

leptonic崩壊モードでのleptonはprompt leptonと見分け難い。
-> 本研究では、hadronic tauの同定(以下tauID)のみ考える。
(ATLAS実験でもhadronic tauが主対象モード)

	主な崩壊モード	Br
Leptonic	$\tau \longrightarrow l^- \nu \nu$	35.2%
<u>Hadronic</u>		64.8%
1-prong	$\tau^- \rightarrow \pi^- \nu_{\tau} + N \pi^0 \text{ (N=0,1,2)}$	- 46.7%
3-prong	$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau} + N \pi^0 (N=0,1)$	- 11.7%

Hadronic tauの特徴

☑1本または3本の荷電トラック

 \square π ±, π 0 が ブースト (tau 質量に対し、 π が極めて軽いため)

→細い領域に1または3荷電粒子が存在するJet

しかし、QCDからのbackgroundが多く、その評価が困難。

->実験データから実際にtauIDを評価することは、tauを含む物理解析において非常に重要。

研究方法

~W->tau nu事象を用いたTau ID Scale Factor の測定~

- 1.W->taunu eventを効率よく捕まえる。
 - nu=消失エネルギー(MET)の要求:エネルギーのベクトル和から評価
 - tau jetの要求:tau jetの細さの特徴を用いる
 - 横方向質量(Mt)の要求: tauの横方向運動量とMETで組んだ質量がWの質量に近い。
- 2.上記のイベントセレクションで残った事象のtau候補について、飛跡(track)数分布をbackgroundを含めた分布でフィットし、Wからのtauの割合f(=fraction)を求める。

- <u>Signal</u> : 確率分布関数 →MC (W-> τ ν) を用いる
- QCD : 確率分布関数 →分布はデータから評価する(後述)
- <u>EWK</u> : W/Zがtau以外に崩壊する場合の過程でshapeはMC , normalizeはobserved cross section(W/Z) .
- 3. フィットで得られたf からTau ID Scale Factor SFを導出。

Dataset and event selection

<u>Trigger</u>

- ●tauIDの影響を小さくするためMET triggerを使用
- •MCから期待されるtau数を出すため右図のように Period毎にunprescaled triggerを使用
 - *Trigger menu

EF_xe30_noMu(EF_xe40_noMu)

-MET閾値>30GeV(>40GeV)のtrigger

Period	EF_xe30_noMu	EF_xe40_noMu
Е	1.0	-
F	1.8	-
G	5.4	-
H	-	5.5
I	-	20
Total	8.3	26

カテゴリー分け

- -Triggerやeventに付随するjetの数によって,kinematicsやtauのpurityが大きく違うため以下のような3つのカテゴリーに分けて,pre-section後さらに下のtableのようなselectionをかける。
- Ojet in EF_xe30_noMu
- •1 or 2jets in EF_xe30_noMu
- •0,1 or 2jets in EF_xe40_noMu

	EF_xe30_noMu	EF_xe40_noMu	
no jet	$E_{\mathrm{T}}^{\mathrm{miss}} > 30~\mathrm{GeV}$		ただし各変数は以下に従う。
	$60 < m_T < 100 \text{ GeV}$	$E_{ m T}^{ m miss} >$ 40 GeV	2 -lep Emiss (1 A A)
	$VtxE_T^{miss}$ significance > 6	-	$\Rightarrow m_T = \sqrt{2 p_T^{lep} E_T^{miss} (1 - \cos \Delta \phi)}$
1 or 2 jets	$E_{ m T}^{ m miss} >$ 30 GeV	$VtxE_T^{miss}$ significance > 8	Emiss E
	$30 < m_T < 90 \text{ GeV}$		$VtxE_T^{miss}$ significance = $\frac{E_T^{miss}}{\sqrt{\Sigma p_T}}$.
	$VtxE_T^{miss}$ significance > 7		

QCD shapeのモデリングの研究

QCD過程はEWK過程と比較して、MCで実験事実を詳細に記述するのは困難であり、不定性も大きい。

-> データからtau Signal regionのトラック分布の形を抽出する。

QCD modeling

以下の2つのmodelingを用いる

1. based on W+jets

右図よりW ->Inu過程に付随するjet がtauにfake するeventがQCD backgroundとして支配的。

→dataからW->enu+jet eventを選別しそれに付 随するjetがtauへfakeした時のtrack分布を QCD modelingとする。

2.Based on QCD-dijet

方法1のcross check(MC predictionが間違っている可能性もあるため)としてQCD di-jet eventが支配的な領域のtrack分布を使う.

*track分布はsignal領域とcontrol領域の横方向運動量の違いを補正したものを使う。

Based on W+jets modeling

- -前述のように本解析において主要なback groundは右図のようなW+jet事象である。
- そこでW->enu+jet事象を用いて、この過程におけるjetがtauにfakeした時のtrack分布をsignal regionのQCD modeling とする。

- •左図より、event selection後のfake jetはMCとdataで良い一致を示す。
- •data plotをQCD modelingとして使う。

2011年3月25日

Based on di-jet for modeling systematic

-前述のようにMC predictionが間違ってることも考えられる。 (主にq-jet, g-jetの違い等,前述のW+jet事象はLHCではq-jet dominant)

-そこでMtの低いregionのtrack分布をreweight function{Pt(SR)/Pt(CR)}を使ってevent

毎に補正した分布をsignal regionのtrack分布として用いる。

SR,CRはMt領域で以下のように定義

•SR: Mt window(page6)

•CR: Mt<10GeV

二つのmodelingのTauID SFの違いをQCD modelingのsystematic uncertaintyとする。

- •Reweight event by event.
- •EWKs are subtracted.

- •Mtの低い量式ではQCD(赤)di-jet eventが支配的であり、dataもよく再現する。
- •W/Z等のelectroweakはMCのpredictionを使って引く。

Fitting result

-Tau fraction f のみをパラメーターにしたfitting結果

Based on W+jets

Based on QCD di-jet (pt weight)

10

上のfittingから測定したデータ中のtau数:

	- 		
	Number of signals		
category	Fake from $W + j$	p_T weight	
0jet in EF_xe30_noMu	295.1 ± 13.2	298.2 ± 11.4	

- •どちらのmodelingもよくmodelされている。
- •Modelingによるtau数の違いは系統誤差としてSFの誤差へいれる。

Verification using central fraction

Fittingに使われたTau候補のcalorimeterのshapeをfittingから得られたsignal fractionを用いて規格化した分布。

Based on W+jets modeling

Based on QCD di-jet modeling

Both modeling are good agreement with data!

Fraction of transverse energy in the cone (dR < 0.1) about the t candidate normalized by that about the cone (dR < 0.4)

MET Trigger 効率の評価

-Trigger効率を含まないtauID SFを評価するため、MET trigger 効率を求める。

<u>方法</u>

Lepton triggerでW->enu eventを捕まえ、その事象を使い、以下の式のようにしてMET

trigger efficiencyを評価する。

EventWeight = $data(W \rightarrow ev) \frac{MC(W \rightarrow \tau v)}{MC(W \rightarrow ev)}$

Event毎に右plotのevent weightを適用する。 また系統誤差の評価としてprong(tau cone中のtrack数)毎のevent weight を用いる。

Result with all uncertainties

MCの予想とdataの比較					
category	Expected number	Number of tau			
	with MC	in data			
0jet in EF_xe30_noMu	295.6	295.1 ± 13.2			
1 or 2 jets in EF_xe30_noMu	135.9	121.2 ± 16.9			
0,1 or 2 jets in EF_xe40_noMu	78.8	111.6 ± 15.0			

各カテゴリーのTauID SF

3つのカテゴリーをcombineしたTauID SF

他の方法を用いた結果

系統誤差のソー	−ス:	
いてのつんだ士	- エコムムナ	

以下の3つが支配的なもの

- Tau jet energy scale
- •Generatorの違い
- σ_{obs}(W->Inu)の不定性

	Sources	Uncertainty			
		Combined	0jet in	1 or 2 jets in	0,1 or 2jets in
			EF_xe30_noMu	EF_xe30_noMu	EF_xe40_noMu
Ī	Jet modeling	1.0%	1.1%	11.5%	3.0%
	Observed cross section of W boson	7.9%	5.8%	5.8%	5.8%
	Trigger efficiency	3.8%	4.8%	1.3%	0.4%
	Electron fake rate	4.0%	4.0%	4.7%	4.4%
Ā	Generator	12.3%	16.0%	5.5%	7.5%
	Tau energy scale	10.0%	10.4%	15.6%	6.3%
	Jet energy scale	0.1%	1.0%	6.6%	0.1%
	Electron energy scale	0.8%	0.5%	2.0%	2.2%
	vtxMET significance	0.2%	0.1%	0.1%	0.1%
	Total	18.6%	21.0%	22.6%	12.8%

13

Summary

Conclusion

- •ATLASで2010年に取得されたデータを用いてTau IDの同定効率を見積もる方法を考案した。
- •W->taunu eventを用いて、tau中の荷電トラックの数をフィットすることでデータ中のtauの数(Ndata tau)を見積もる。
- ●本研究より得たTau ID scale factor(N^{data}tau</sub>/N^{MC}tau)は

$0.98 \pm 0.04 (stat) \pm 0.18 (sys)$

•他の方法の値ともよい一致を示す。

Plan

- •2011年に取得予定の高統計のデータからも見積もる.
- •新たに考案されたMETsignificance(=MET/sqrt(sumET)) triggerを使うことで測定 精度の向上を狙う。
- ●測定されたTauID SFを用いてH->tautauの解析を行う。

14