タウ粒子を終状態に含む トップクォーク対生成断面積の測定

名古屋大学 高エネルギー物理学 (N) 研究室

高橋 悠太 戸本 誠, ATLAS Top Working Group

2011年9月13日 北九州工業大学

¹/12

Introduction

- <u>終状態に τ を含むトップクォーク対生成断面積の測定</u>
 √s=7, 14 TeV領域での初の標準模型検証
 - 断面積 = Tevatron x 25
 - 検出器の τ 同定能力の理解
 - $H^+ \rightarrow \tau + \nu, \ \widetilde{\tau} \rightarrow \tau + \widetilde{\chi}$
- <u>ATLAS実験における観測数の見積もり</u>

 $-\sqrt{s} = 7$ TeV, $\sigma_{tt} = 160$ pb, Br (τ , x) = 10%

- 1600 事象 / 100pb⁻¹ → 実験初期に観測可能な物理量

- 事象選別の確立: $tt(\tau, l)$ に着目($l = \mu, e$) - τ の正確な数え上げ(同定効率, fake rate)

信号事象の特徴

³/12

以降、*tt*(τ,μ)に限定 Hadronic 崩壊 (65%) に限定して再構成 (生成断面積 = 4 pb) 奇数本(特に1本、3本)の荷電トラック • 電磁カロリメータでの Jet 半径 数mm 程度の有意なインパ (< QCD jet, > EM jet)を利用して識別 クトパラメータ Secondary vertex の存在 同定効率 30% 同定効率 60% 最外層の µ 粒子 検出器まで透過 τ , Jet, $\mu \mathcal{O}$ energy unbalance から計算 同定効率 95% W トリガー効率 85% jet

⁴/12 背景事象と、事象選別のポイント

- ・必ずしも b-jet を伴わない
- 信号よりも小さな muon p_T
 - ・必ずしも b-jet を伴わない

τ→ 誤認識率を把握した上での選別

 μ , jet, 損失E_T, Σ E_T: 分布から信号の有意さ(S/ $\sqrt{S+B}$)を最大にするところに設定

評価のためのデータセット

- ATLAS 実験の検出器シミュレーションを通した MC simulation sample を用いる
 - 十分な統計量 (> 400pb)
 - 信号に加え、寄与すると考えられる全背景事象を網羅

	MC	積分ルミノシティー	事象数
信号事象	tt	1.5 fb⁻¹	1 x 10 ⁶
背景事象	W + Jets	0.4 fb ⁻¹	1 x 10 ⁶
	Z + Jets	0.4 fb ⁻¹	3 x 10 ⁵
	Single top	1.4 fb ⁻¹	1 x 10 ⁴
	W+bb	1.7 fb ⁻¹	5 x 10 ³

• 積分ルミノシティー 100pb⁻¹ にスケールして評価

事象選別 (1) τ に対する選別

⁶/12

- W + Jets, *tt* (*l*, jet)の除去が目的
 → τ の 誤識別率の p_T 依存性を把握した選別が必要
- τ の 誤 識 別 率 の 評 価 (MC を 使 用)

- tt (l, jet)に於て、W由来の jet (≠ τ) がτに誤認識される割合を調べる

誤識別率の観点からは高い p_T cut が良いが、統計との兼合い (Trade-off) → 閾値を変化させ、信号の有意さ (S/√S+B) が最大になる p_T > 10 GeV に設定

事象選別 (2) μ , jet, missing E_T , $\Sigma E_T^{7/12}$

- μ, jet, 損失E_T, ΣE_Tに対し、S/√S+Bを指標に閾値を決定
 - p_T > 20 GeV の μ粒子 が 1本(対 Z + Jets)
 - E_T > 20 GeV の Jet (うち1本は b-jet) が 2本以上 (対 W/Z + Jets)
 - 損失 E_T > 40 GeV (対 Z + Jets)
 - $\Sigma E_T > 220 \text{ GeV}$ (対 W/Z + Jets)

⁸/12

事象選別の結果 (100pb⁻¹)

selections	<i>tt</i> (τ,μ)	tt BG	W + Jet	Z + Jet
Muon Triggered	296	2.50 x 10 ³	6.25 x 10 ⁵	1.05 x 10 ⁴
$p_T^{\mu} > 20 GeV$	226	1.71 x 10 ³	5.22 x 10 ⁵	4.31 x 10 ³
$\tau - ID, \ p_T^{\tau} > 10 GeV$	43.0	86.1	7.66 x 10 ³	784
$Q\tau \times Q\mu = -1$	39.9	50.2	3.38 x 10 ³	738
\geq 2jets (E _T > 20GeV)	35.3	48.9	412	88.4
損失E _T > 40 GeV	27.9	30.8	168	16.2
$\Sigma E_T > 210 \text{ GeV}$	27.7	30.5	88.1	13.9
B-jet	20.7(7.0%)	23.0 (0.9%)	8.0 (1.3x10 ⁻³ %)	1.0 (0.9x10 ⁻² %)

- ・ 信号の選別効率は 7.0%, W/Z + Jet 背景事象は >99.99% 除去
 - 最も断面積の小さかった *tt* (μ, jet) が最大の背景事象を構成
 - 信号の有意さ(S/√S+B)は2.8
- *tt* (τ,μ) と *tt* (τ,e) を併せて S/√S+B = 3.8 (2011年初旬)

⁹/12 実データを用いた *tt* (τ, μ) 探索

今年5-9月に取得した <u>2.4 pb⁻¹</u>の実データを使用
 - 観測期待値:信号 0.5,背景事象 0.8

¹⁰/12

 $tt(\tau,\mu)$ 第一候補事象

今後の課題

¹¹/12

τ の 同定効率、誤識別率の評価

- τID を行う前は、殆ど W(→μν) + Jet からの寄与
- τ ID を行ってやっと、W+Jet, tt BG からの寄与が同程度
- <u>Data driven な</u> τ の同定効率、誤識別率の評価が肝要

Summary

- *tt*(τ, *l*)の事象選別手法を確立
 - 主な背景事象は W + Jet, Z + Jet, *tt* (μ, jet)
 - τの誤識別率、信号の有意さ (S/√S+B) を指標に選別
 - 事象選別効率 7.0%,背景事象 > 99.99% 除去に成功
 - *tt* (τ,μ), *tt* (τ,e) 併せて S/√S+B = 3.8 で観測可能
- 実データ(今年5 9月, 2.4pb⁻¹)を用いた *tt* (τ,μ) 探索
 第一候補事象を発見
 - ・期待値:信号 0.5,背景事象 0.8 - 実データ / MC の整合性も次第に確認出来てきている
- 今後、ての識別効率/誤識別率の測定を行い、2011年
 中に100pb⁻¹以上を用いた生成断面積測定を目指す