ATLAS Lvl1 Endcap Muon Trigger Systemのタイミング調整

総研大 鈴木友

KEK 佐々木修、池野正弘、岩崎博行、石野雅也

名大理 戸本誠,杉本拓也,奥村恭幸,高橋悠太,長谷川慧,若林潤,志知秀治 神戸大理 蔵重久弥,石川明正,越智敦彦,松下 崇,早川俊,西山知徳,吹田 航一,谷 和俊,德永香

東大素セ 川本辰男, 坂本宏, 織田 勧, 久保田隆至, 結束晃平, 神谷 隆之, ニノ宮 陽一,

阪大理 菅谷頼仁

首都大 福永力

内容

- ATLAS検出器とトリガーシステム
- Lvl1 Endcap Muon Trigger System
- タイミング調整
 システム内のタイミング調整
 ビームに対するタイミング調整
 まとめと課題

ATLAS 検出器とトリガーシステム

•LHC加速器

Lvl1 Endcap Muon Trigger System

•高い横方向運動量(pT)を持つミューオンを探す

横運動量の計算

- 1. 衝突点からTGC3のhitまで無 限大運動量軌跡を仮定
- 1.からのTGC1,2のhit位置のズレから運動量を計算(コインシデンス処理)

TGC エレクトロニクス システム

バンチ識別のためのタイミング調整

• 遅延要素: LHCクロックとATLAS検出器の間の距離

チャンネル間のタイミング調整

日本物理学会 2010年秋季大会

バンチ衝突に対してのクロック位相調整

位相スキャン

セクター毎に-5nsec~+5nsecを設定

- イベント選別
- Muon検出器と内部飛跡検出器の 間でのトラックマッチ
- *2. pT*>5GeV

クロック位相に対するBC fraction

ゲート幅に依存したBC fraction

ゲート幅を26ナノ秒から50ナノ秒まで広げることが可能

	①Prev	②Pre& Cent	③Cent	④Cent & Nex	⑤Next	
ゲート幅: 26nsec	0.0%	0.1%	95.4%	1.0%	3.5%	<u>ר הע</u>
ゲート幅 37nsec	0.0%	61.3%	34.1%	3.6%	0.9%	2.070
			γ			

96.5%→99.1%

TriggerのBC分布

現在のトリガーのタイミング分布

	Prev	Cent	Next
ゲート幅=26nsec	0.0%	99.5%	0.5%

今後の課題

・ゲート幅の最適化
 ・場所依存性の確認
 ・チェンバーの個性

まとめ

タイムジッター≒バンチ衝突間隔なのでナノ秒単位でのタイミング調 整が必要

•チャンネル間(10,000ケーブル)のタイミング差は、テストパルスを用いて 全幅2.5nsec以内に抑えた

・バンチ衝突に対し位相調整を行い、前バンチへのこぼれを0.0%へ修正し、99.5%の割合でセントラルバンチでトリガーを発行

ビーム前にチャンネル間のタイミング調整を終え、 バンチ衝突開始後、思い通りの手法でタイミングを揃えた

ゲート幅の最適化が今後の課題